Abstract

We demonstrate, for the first time, the dynamic correction of aberrated images in real-time using a polymeric composite with fast response times. The current novel experimental design is capable of restoring a phase aberrated, image carrying laser beam, to nearly its original quality. The ability to reconstruct images in real-time is demonstrated through the changing of the aberrating medium at various speeds. In addition, this technique allows for the correction of images in motion, demonstrated through the oscillatory movement of the resolution target. We also have demonstrated that important parameters of the materials in the study such as response times, diffraction efficiencies and optical gains all retain high figures of merit values under the current experimental conditions.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Beam cleanup and image restoration with a photorefractive polymeric composite

Jeffrey G. Winiarz and Fassil Ghebremichael
Appl. Opt. 43(15) 3166-3170 (2004)

Image transmission through a thick dynamic distorter by the photorefractive fanning effect

Jiasen Zhang, Huitian Wang, Shin Yoshikado, and Tadashi Aruga
Opt. Lett. 23(8) 585-587 (1998)

Photorefractive dynamics in poly(triarylamine)-based polymer composites

Naoto Tsutsumi, Kenji Kinashi, Kento Masumura, and Kenji Kono
Opt. Express 23(19) 25158-25170 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Yitzhaky, I. Dror, and N. S. Kopeika, “Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer function,” Opt. Eng. 36, 3064–3072 (1997).
    [Crossref]
  2. M. C. Gower, “Phase conjugation,” J. Mod. Optic. 35, 449–472 (1988).
    [Crossref]
  3. C. L. Hayes, R. A. Brandewie, W. C. Davis, and G. E. Mevers, “Experimental test of an infrared phase conjugation adaptive array,” J. Opt. Soc. Am. 67, 269–277 (1977).
    [Crossref]
  4. W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863–9866 (2001).
    [Crossref]
  5. T. Baade, A. Kiessling, and R. Kowarschik, “A simple method for image restoration and image pre-processing using two-wave mixing in Bi12TiO20,” J. Opt. A-Pure Appl. Op. 3, 250–254 (2001).
    [Crossref]
  6. A. N. Simonov, A. V. Larichev, V. P. Shibaev, and A. I. Stakhanov, “High-quality correction of wavefront distortions using low-power phase conjugation in azo dye containing LC polymer,” Opt. Commun. 197, 175–185 (2001).
    [Crossref]
  7. A. Brignon, J.-P. Huignard, M. H. Garrett, and I. Mnushkina, “Spatial beam cleanup of a Nd:YAG laser operating at 1.06 µm with two-wave mixing in Rh:BaTiO3,” Appl. Opt. 36, 7788–7793 (1997).
    [Crossref]
  8. A. E. Chiou and P. Yeh, “Laser-beam cleanup using photorefractive two-wave mixing and optical phase conjugation,” Opt. Lett. 11, 461–463 (1986).
    [Crossref] [PubMed]
  9. A. E. T. Chiou and P. Yeh, “Beam cleanup using photorefractive two-wave mixing,” Opt. Lett. 10, 621–623 (1985).
    [Crossref] [PubMed]
  10. B. Kippelen, K. Meerholz, Sandalphon, B. L. Volodin, and N. Peyghambarian, “Photorefractive polymers and their applications,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A  283, 109–114 (1996).
    [Crossref]
  11. W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
    [Crossref]
  12. V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Uspekhi Fizicheskikh Nauk 129, 113–137 (1979).
    [Crossref]
  13. D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in lithium niobate,” J. Appl. Phys. 34, 1042–1049 (1972).
    [Crossref]
  14. G. S. Agarwal and E. Wolf, “Theory of phase conjugation with weak scatterers,” J. Opt. Soc. Am. 72, 321 (1982).
    [Crossref]
  15. J. Zhang, S. Yoshikado, and T. Aruga, “Distorted image reconstruction using photorefractive effects,” Journal of the Communications Research Laboratory 49, 67–71 (2002).
  16. M. Tziraki1, R. Jones, P. M. W. French, M. R. Melloch, and D.D. Nolte, “Photorefractive holography for imaging through turbidmedia using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
    [Crossref]
  17. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1334 (1995).
    [Crossref] [PubMed]
  18. E. Leith, H. Chen, Y. Chen, D. Dilworth, J. Lopez, R. Masri, J. Rudd, and J. Valdmanis, “Electronic holography and speckle methods for imaging through tissue using femtosecond gated pulses,” Appl. Opt. 30, 4204–4210 (1991).
    [Crossref] [PubMed]
  19. K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” in Proceedings of IEEE Conference on Trans. Biomed. Eng. (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 1210–1221.
    [Crossref]
  20. N. H. Abramson and K. G. Spears “Single pulse light-in-flight recording by holography” Appl. Opt. 28, 1834–1841 (1989).
    [Crossref] [PubMed]
  21. M. A. Duguay and A. T. Mattick, “Untrahigh speed photography of picosecond light pulses and echoes,” Appl. Opt. 10, 2162–2171 (1971).
    [Crossref] [PubMed]
  22. E. Hendrickx, Y. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores,” J.Mater.Chem 9, 2251–2258 (1999).
    [Crossref]
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).
  24. D. Wright, M. A. Díaz-García, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
    [Crossref]
  25. S. H. Chung and J. R. Stevens, “Time-dependent correlation and the evaluation of the stretched exponential or Kohlrausch-Williams-Watts function,” Am. J. Phys. 11, 1024–1030 (1991).
    [Crossref]
  26. J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic-inorganic nanocomposite,” J. Am. Chem. Soc. 121, 5287–5295 (1999).
    [Crossref]
  27. B. Swedek, N. Cheng, Y. Cui, J. Zieba, J. Winiarz, and P. N. Prasad, “Temperature-dependence studies of photorefractive effect in a low glass-transition-temperature polymer composite,” J. Appl. Phys. 82, 5923–5931 (1997).
    [Crossref]
  28. Y. Cui, B. Swedek, N. Cheng, J. Zieba, and P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
    [Crossref]
  29. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).

2002 (1)

J. Zhang, S. Yoshikado, and T. Aruga, “Distorted image reconstruction using photorefractive effects,” Journal of the Communications Research Laboratory 49, 67–71 (2002).

2001 (3)

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863–9866 (2001).
[Crossref]

T. Baade, A. Kiessling, and R. Kowarschik, “A simple method for image restoration and image pre-processing using two-wave mixing in Bi12TiO20,” J. Opt. A-Pure Appl. Op. 3, 250–254 (2001).
[Crossref]

A. N. Simonov, A. V. Larichev, V. P. Shibaev, and A. I. Stakhanov, “High-quality correction of wavefront distortions using low-power phase conjugation in azo dye containing LC polymer,” Opt. Commun. 197, 175–185 (2001).
[Crossref]

2000 (1)

M. Tziraki1, R. Jones, P. M. W. French, M. R. Melloch, and D.D. Nolte, “Photorefractive holography for imaging through turbidmedia using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[Crossref]

1999 (3)

E. Hendrickx, Y. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores,” J.Mater.Chem 9, 2251–2258 (1999).
[Crossref]

J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic-inorganic nanocomposite,” J. Am. Chem. Soc. 121, 5287–5295 (1999).
[Crossref]

Y. Cui, B. Swedek, N. Cheng, J. Zieba, and P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
[Crossref]

1998 (1)

D. Wright, M. A. Díaz-García, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[Crossref]

1997 (3)

Y. Yitzhaky, I. Dror, and N. S. Kopeika, “Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer function,” Opt. Eng. 36, 3064–3072 (1997).
[Crossref]

A. Brignon, J.-P. Huignard, M. H. Garrett, and I. Mnushkina, “Spatial beam cleanup of a Nd:YAG laser operating at 1.06 µm with two-wave mixing in Rh:BaTiO3,” Appl. Opt. 36, 7788–7793 (1997).
[Crossref]

B. Swedek, N. Cheng, Y. Cui, J. Zieba, J. Winiarz, and P. N. Prasad, “Temperature-dependence studies of photorefractive effect in a low glass-transition-temperature polymer composite,” J. Appl. Phys. 82, 5923–5931 (1997).
[Crossref]

1996 (1)

B. Kippelen, K. Meerholz, Sandalphon, B. L. Volodin, and N. Peyghambarian, “Photorefractive polymers and their applications,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A  283, 109–114 (1996).
[Crossref]

1995 (1)

1994 (1)

W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[Crossref]

1991 (2)

E. Leith, H. Chen, Y. Chen, D. Dilworth, J. Lopez, R. Masri, J. Rudd, and J. Valdmanis, “Electronic holography and speckle methods for imaging through tissue using femtosecond gated pulses,” Appl. Opt. 30, 4204–4210 (1991).
[Crossref] [PubMed]

S. H. Chung and J. R. Stevens, “Time-dependent correlation and the evaluation of the stretched exponential or Kohlrausch-Williams-Watts function,” Am. J. Phys. 11, 1024–1030 (1991).
[Crossref]

1989 (1)

1988 (1)

M. C. Gower, “Phase conjugation,” J. Mod. Optic. 35, 449–472 (1988).
[Crossref]

1986 (1)

1985 (1)

1982 (1)

1979 (1)

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Uspekhi Fizicheskikh Nauk 129, 113–137 (1979).
[Crossref]

1977 (1)

1972 (1)

D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in lithium niobate,” J. Appl. Phys. 34, 1042–1049 (1972).
[Crossref]

1971 (1)

1969 (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).

Abramson, N. H.

N. H. Abramson and K. G. Spears “Single pulse light-in-flight recording by holography” Appl. Opt. 28, 1834–1841 (1989).
[Crossref] [PubMed]

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” in Proceedings of IEEE Conference on Trans. Biomed. Eng. (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 1210–1221.
[Crossref]

Agarwal, G. S.

Amodei, J. J.

D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in lithium niobate,” J. Appl. Phys. 34, 1042–1049 (1972).
[Crossref]

Anderson, J.

E. Hendrickx, Y. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores,” J.Mater.Chem 9, 2251–2258 (1999).
[Crossref]

Armstrong, N. R.

E. Hendrickx, Y. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores,” J.Mater.Chem 9, 2251–2258 (1999).
[Crossref]

Aruga, T.

J. Zhang, S. Yoshikado, and T. Aruga, “Distorted image reconstruction using photorefractive effects,” Journal of the Communications Research Laboratory 49, 67–71 (2002).

Baade, T.

T. Baade, A. Kiessling, and R. Kowarschik, “A simple method for image restoration and image pre-processing using two-wave mixing in Bi12TiO20,” J. Opt. A-Pure Appl. Op. 3, 250–254 (2001).
[Crossref]

Barry, N. P.

Bjelkhagen, H.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” in Proceedings of IEEE Conference on Trans. Biomed. Eng. (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 1210–1221.
[Crossref]

Brandewie, R. A.

Brignon, A.

Casperson, J. D.

D. Wright, M. A. Díaz-García, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[Crossref]

Chen, H.

Chen, Y.

Cheng, N.

Y. Cui, B. Swedek, N. Cheng, J. Zieba, and P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
[Crossref]

B. Swedek, N. Cheng, Y. Cui, J. Zieba, J. Winiarz, and P. N. Prasad, “Temperature-dependence studies of photorefractive effect in a low glass-transition-temperature polymer composite,” J. Appl. Phys. 82, 5923–5931 (1997).
[Crossref]

Chiou, A. E.

Chiou, A. E. T.

Chun, H.

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863–9866 (2001).
[Crossref]

Chung, S. H.

S. H. Chung and J. R. Stevens, “Time-dependent correlation and the evaluation of the stretched exponential or Kohlrausch-Williams-Watts function,” Am. J. Phys. 11, 1024–1030 (1991).
[Crossref]

Cui, Y.

Y. Cui, B. Swedek, N. Cheng, J. Zieba, and P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
[Crossref]

B. Swedek, N. Cheng, Y. Cui, J. Zieba, J. Winiarz, and P. N. Prasad, “Temperature-dependence studies of photorefractive effect in a low glass-transition-temperature polymer composite,” J. Appl. Phys. 82, 5923–5931 (1997).
[Crossref]

Dainty, J. C.

Davis, W. C.

DeClue, M.

D. Wright, M. A. Díaz-García, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[Crossref]

Díaz-García, M. A.

D. Wright, M. A. Díaz-García, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[Crossref]

Dilworth, D.

Dror, I.

Y. Yitzhaky, I. Dror, and N. S. Kopeika, “Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer function,” Opt. Eng. 36, 3064–3072 (1997).
[Crossref]

Duguay, M. A.

Ferrio, K. B.

E. Hendrickx, Y. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores,” J.Mater.Chem 9, 2251–2258 (1999).
[Crossref]

French, P. M. W.

M. Tziraki1, R. Jones, P. M. W. French, M. R. Melloch, and D.D. Nolte, “Photorefractive holography for imaging through turbidmedia using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[Crossref]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1334 (1995).
[Crossref] [PubMed]

Friend, C. S.

J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic-inorganic nanocomposite,” J. Am. Chem. Soc. 121, 5287–5295 (1999).
[Crossref]

Garrett, M. H.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).

Gower, M. C.

M. C. Gower, “Phase conjugation,” J. Mod. Optic. 35, 449–472 (1988).
[Crossref]

Hayes, C. L.

Hendrickx, E.

E. Hendrickx, Y. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores,” J.Mater.Chem 9, 2251–2258 (1999).
[Crossref]

Herlocker, J. A.

E. Hendrickx, Y. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores,” J.Mater.Chem 9, 2251–2258 (1999).
[Crossref]

Huignard, J.-P.

Hyde, S. C. W.

Jones, R.

M. Tziraki1, R. Jones, P. M. W. French, M. R. Melloch, and D.D. Nolte, “Photorefractive holography for imaging through turbidmedia using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[Crossref]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1334 (1995).
[Crossref] [PubMed]

Joo, W.-J.

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863–9866 (2001).
[Crossref]

Kiessling, A.

T. Baade, A. Kiessling, and R. Kowarschik, “A simple method for image restoration and image pre-processing using two-wave mixing in Bi12TiO20,” J. Opt. A-Pure Appl. Op. 3, 250–254 (2001).
[Crossref]

Kim, N.

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863–9866 (2001).
[Crossref]

Kim, N.-J.

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863–9866 (2001).
[Crossref]

Kippelen, B.

E. Hendrickx, Y. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores,” J.Mater.Chem 9, 2251–2258 (1999).
[Crossref]

B. Kippelen, K. Meerholz, Sandalphon, B. L. Volodin, and N. Peyghambarian, “Photorefractive polymers and their applications,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A  283, 109–114 (1996).
[Crossref]

Klein, M. B.

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).

Kopeika, N. S.

Y. Yitzhaky, I. Dror, and N. S. Kopeika, “Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer function,” Opt. Eng. 36, 3064–3072 (1997).
[Crossref]

Kowarschik, R.

T. Baade, A. Kiessling, and R. Kowarschik, “A simple method for image restoration and image pre-processing using two-wave mixing in Bi12TiO20,” J. Opt. A-Pure Appl. Op. 3, 250–254 (2001).
[Crossref]

Kukhtarev, N. V.

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Uspekhi Fizicheskikh Nauk 129, 113–137 (1979).
[Crossref]

Lal, M.

J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic-inorganic nanocomposite,” J. Am. Chem. Soc. 121, 5287–5295 (1999).
[Crossref]

Larichev, A. V.

A. N. Simonov, A. V. Larichev, V. P. Shibaev, and A. I. Stakhanov, “High-quality correction of wavefront distortions using low-power phase conjugation in azo dye containing LC polymer,” Opt. Commun. 197, 175–185 (2001).
[Crossref]

Leith, E.

Lopez, J.

Mash, E. A.

E. Hendrickx, Y. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores,” J.Mater.Chem 9, 2251–2258 (1999).
[Crossref]

Masri, R.

Mattick, A. T.

Meerholz, K.

B. Kippelen, K. Meerholz, Sandalphon, B. L. Volodin, and N. Peyghambarian, “Photorefractive polymers and their applications,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A  283, 109–114 (1996).
[Crossref]

Melloch, M. R.

M. Tziraki1, R. Jones, P. M. W. French, M. R. Melloch, and D.D. Nolte, “Photorefractive holography for imaging through turbidmedia using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[Crossref]

Mevers, G. E.

Mnushkina, I.

Moerner, W. E.

D. Wright, M. A. Díaz-García, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[Crossref]

W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[Crossref]

Moon, I. K.

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863–9866 (2001).
[Crossref]

Nolte, D.D.

M. Tziraki1, R. Jones, P. M. W. French, M. R. Melloch, and D.D. Nolte, “Photorefractive holography for imaging through turbidmedia using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[Crossref]

Odulov, S. G.

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Uspekhi Fizicheskikh Nauk 129, 113–137 (1979).
[Crossref]

Persoons, A. P.

E. Hendrickx, Y. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores,” J.Mater.Chem 9, 2251–2258 (1999).
[Crossref]

Peyghambarian, N.

E. Hendrickx, Y. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores,” J.Mater.Chem 9, 2251–2258 (1999).
[Crossref]

B. Kippelen, K. Meerholz, Sandalphon, B. L. Volodin, and N. Peyghambarian, “Photorefractive polymers and their applications,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A  283, 109–114 (1996).
[Crossref]

Prasad, P. N.

J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic-inorganic nanocomposite,” J. Am. Chem. Soc. 121, 5287–5295 (1999).
[Crossref]

Y. Cui, B. Swedek, N. Cheng, J. Zieba, and P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
[Crossref]

B. Swedek, N. Cheng, Y. Cui, J. Zieba, J. Winiarz, and P. N. Prasad, “Temperature-dependence studies of photorefractive effect in a low glass-transition-temperature polymer composite,” J. Appl. Phys. 82, 5923–5931 (1997).
[Crossref]

Rudd, J.

Sandalphon,

B. Kippelen, K. Meerholz, Sandalphon, B. L. Volodin, and N. Peyghambarian, “Photorefractive polymers and their applications,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A  283, 109–114 (1996).
[Crossref]

Serafin, J.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” in Proceedings of IEEE Conference on Trans. Biomed. Eng. (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 1210–1221.
[Crossref]

Shibaev, V. P.

A. N. Simonov, A. V. Larichev, V. P. Shibaev, and A. I. Stakhanov, “High-quality correction of wavefront distortions using low-power phase conjugation in azo dye containing LC polymer,” Opt. Commun. 197, 175–185 (2001).
[Crossref]

Silence, S. M.

W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[Crossref]

Simonov, A. N.

A. N. Simonov, A. V. Larichev, V. P. Shibaev, and A. I. Stakhanov, “High-quality correction of wavefront distortions using low-power phase conjugation in azo dye containing LC polymer,” Opt. Commun. 197, 175–185 (2001).
[Crossref]

Soskin, M. S.

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Uspekhi Fizicheskikh Nauk 129, 113–137 (1979).
[Crossref]

Spears, K. G.

N. H. Abramson and K. G. Spears “Single pulse light-in-flight recording by holography” Appl. Opt. 28, 1834–1841 (1989).
[Crossref] [PubMed]

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” in Proceedings of IEEE Conference on Trans. Biomed. Eng. (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 1210–1221.
[Crossref]

Staebler, D. L.

D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in lithium niobate,” J. Appl. Phys. 34, 1042–1049 (1972).
[Crossref]

Stakhanov, A. I.

A. N. Simonov, A. V. Larichev, V. P. Shibaev, and A. I. Stakhanov, “High-quality correction of wavefront distortions using low-power phase conjugation in azo dye containing LC polymer,” Opt. Commun. 197, 175–185 (2001).
[Crossref]

Stevens, J. R.

S. H. Chung and J. R. Stevens, “Time-dependent correlation and the evaluation of the stretched exponential or Kohlrausch-Williams-Watts function,” Am. J. Phys. 11, 1024–1030 (1991).
[Crossref]

Swedek, B.

Y. Cui, B. Swedek, N. Cheng, J. Zieba, and P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
[Crossref]

B. Swedek, N. Cheng, Y. Cui, J. Zieba, J. Winiarz, and P. N. Prasad, “Temperature-dependence studies of photorefractive effect in a low glass-transition-temperature polymer composite,” J. Appl. Phys. 82, 5923–5931 (1997).
[Crossref]

Twieg, R. J.

D. Wright, M. A. Díaz-García, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[Crossref]

Tziraki1, M.

M. Tziraki1, R. Jones, P. M. W. French, M. R. Melloch, and D.D. Nolte, “Photorefractive holography for imaging through turbidmedia using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[Crossref]

Valdmanis, J.

Vinetskii, V. L.

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Uspekhi Fizicheskikh Nauk 129, 113–137 (1979).
[Crossref]

Volodin, B. L.

B. Kippelen, K. Meerholz, Sandalphon, B. L. Volodin, and N. Peyghambarian, “Photorefractive polymers and their applications,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A  283, 109–114 (1996).
[Crossref]

Wechsler, B. A.

Winiarz, J.

B. Swedek, N. Cheng, Y. Cui, J. Zieba, J. Winiarz, and P. N. Prasad, “Temperature-dependence studies of photorefractive effect in a low glass-transition-temperature polymer composite,” J. Appl. Phys. 82, 5923–5931 (1997).
[Crossref]

Winiarz, J. G.

J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic-inorganic nanocomposite,” J. Am. Chem. Soc. 121, 5287–5295 (1999).
[Crossref]

Wolf, E.

Wright, D.

D. Wright, M. A. Díaz-García, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[Crossref]

Yeh, P.

Yitzhaky, Y.

Y. Yitzhaky, I. Dror, and N. S. Kopeika, “Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer function,” Opt. Eng. 36, 3064–3072 (1997).
[Crossref]

Yoshikado, S.

J. Zhang, S. Yoshikado, and T. Aruga, “Distorted image reconstruction using photorefractive effects,” Journal of the Communications Research Laboratory 49, 67–71 (2002).

Zhang, J.

J. Zhang, S. Yoshikado, and T. Aruga, “Distorted image reconstruction using photorefractive effects,” Journal of the Communications Research Laboratory 49, 67–71 (2002).

Zhang, L.

J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic-inorganic nanocomposite,” J. Am. Chem. Soc. 121, 5287–5295 (1999).
[Crossref]

Zhang, Y.

E. Hendrickx, Y. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores,” J.Mater.Chem 9, 2251–2258 (1999).
[Crossref]

Zhu, X.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” in Proceedings of IEEE Conference on Trans. Biomed. Eng. (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 1210–1221.
[Crossref]

Zieba, J.

Y. Cui, B. Swedek, N. Cheng, J. Zieba, and P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
[Crossref]

B. Swedek, N. Cheng, Y. Cui, J. Zieba, J. Winiarz, and P. N. Prasad, “Temperature-dependence studies of photorefractive effect in a low glass-transition-temperature polymer composite,” J. Appl. Phys. 82, 5923–5931 (1997).
[Crossref]

Am. J. Phys. (1)

S. H. Chung and J. R. Stevens, “Time-dependent correlation and the evaluation of the stretched exponential or Kohlrausch-Williams-Watts function,” Am. J. Phys. 11, 1024–1030 (1991).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (1)

M. Tziraki1, R. Jones, P. M. W. French, M. R. Melloch, and D.D. Nolte, “Photorefractive holography for imaging through turbidmedia using low coherence light,” Appl. Phys. B 70, 151–154 (2000).
[Crossref]

Appl. Phys. Lett. (1)

D. Wright, M. A. Díaz-García, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).

Chem. Rev. (1)

W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[Crossref]

J. Am. Chem. Soc. (1)

J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, “Observation of the photorefractive effect in a hybrid organic-inorganic nanocomposite,” J. Am. Chem. Soc. 121, 5287–5295 (1999).
[Crossref]

J. Appl. Phys. (3)

B. Swedek, N. Cheng, Y. Cui, J. Zieba, J. Winiarz, and P. N. Prasad, “Temperature-dependence studies of photorefractive effect in a low glass-transition-temperature polymer composite,” J. Appl. Phys. 82, 5923–5931 (1997).
[Crossref]

Y. Cui, B. Swedek, N. Cheng, J. Zieba, and P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
[Crossref]

D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in lithium niobate,” J. Appl. Phys. 34, 1042–1049 (1972).
[Crossref]

J. Mod. Optic. (1)

M. C. Gower, “Phase conjugation,” J. Mod. Optic. 35, 449–472 (1988).
[Crossref]

J. Opt. A-Pure Appl. Op. (1)

T. Baade, A. Kiessling, and R. Kowarschik, “A simple method for image restoration and image pre-processing using two-wave mixing in Bi12TiO20,” J. Opt. A-Pure Appl. Op. 3, 250–254 (2001).
[Crossref]

J. Opt. Soc. Am. (2)

J.Mater.Chem (1)

E. Hendrickx, Y. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, “Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores,” J.Mater.Chem 9, 2251–2258 (1999).
[Crossref]

Journal of the Communications Research Laboratory (1)

J. Zhang, S. Yoshikado, and T. Aruga, “Distorted image reconstruction using photorefractive effects,” Journal of the Communications Research Laboratory 49, 67–71 (2002).

Mol. Cryst. Liq. Cryst. Sci. Technol. (1)

B. Kippelen, K. Meerholz, Sandalphon, B. L. Volodin, and N. Peyghambarian, “Photorefractive polymers and their applications,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A  283, 109–114 (1996).
[Crossref]

Opt. Commun. (1)

A. N. Simonov, A. V. Larichev, V. P. Shibaev, and A. I. Stakhanov, “High-quality correction of wavefront distortions using low-power phase conjugation in azo dye containing LC polymer,” Opt. Commun. 197, 175–185 (2001).
[Crossref]

Opt. Eng. (1)

Y. Yitzhaky, I. Dror, and N. S. Kopeika, “Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer function,” Opt. Eng. 36, 3064–3072 (1997).
[Crossref]

Opt. Lett. (3)

Polymer (1)

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863–9866 (2001).
[Crossref]

Uspekhi Fizicheskikh Nauk (1)

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Uspekhi Fizicheskikh Nauk 129, 113–137 (1979).
[Crossref]

Other (2)

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” in Proceedings of IEEE Conference on Trans. Biomed. Eng. (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 1210–1221.
[Crossref]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).

Supplementary Material (19)

» Media 1: MPG (1684 KB)     
» Media 2: MPG (1725 KB)     
» Media 3: MPG (1725 KB)     
» Media 4: MPG (1725 KB)     
» Media 5: MPG (1725 KB)     
» Media 6: MPG (1725 KB)     
» Media 7: MPG (1725 KB)     
» Media 8: MPG (1725 KB)     
» Media 9: MPG (1725 KB)     
» Media 10: MPG (1725 KB)     
» Media 11: MPG (1725 KB)     
» Media 12: MPG (1725 KB)     
» Media 13: MPG (1725 KB)     
» Media 14: MPG (1725 KB)     
» Media 15: MPG (1725 KB)     
» Media 16: MPG (1725 KB)     
» Media 17: MPG (1725 KB)     
» Media 18: MPG (1725 KB)     
» Media 19: MPG (1725 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(1.68 MB) Schematic diagram depicting the experimental setup used for PR characterizations. The number in parentheses is the position of each relevant optical element with respect to the sample where negative (positive) numbers denote the input (output) side of the sample along the appropriate beam path. (λ/2)1, (λ/2)2, half-wave plates (-200 cm, -70 cm, respectively); L1–5, Lens, f L1=100 cm, f L2=15 cm, f L3=10 cm, f L4=7.5 cm, f L5=20 cm (-70 cm, -54.7 cm, -31.2 cm, -13.7 cm, 16.1 cm, respectively); AF, Air Force resolution target (-34.3 cm); AB, phase aberrating medium (-30.4 cm); PBS, polarizing beam splitter; PD, photodiode; CCD, charge-coupled-device camera (145 cm).

Fig. 2.
Fig. 2.

Corrected and uncorrected images obtained as the aberrator is moved at constant speed. The speed of aberrator translation in the remainder of the frames are as follows (all videos are 1.73 MB in size): a) 0.0025 mm/s; b) 0.0055 mm/s; c) 0.012 mm/s; d) 0.019 mm/s; e) 0.033 mm/s; f) 0.068 mm/s; g) 0.14 mm/s; and h) 0.32 mm/s. E=85.7 V/µm for all corrected images. [Media 2] [Media 3] [Media 4] [Media 5] [Media 6] [Media 7] [Media 8] [Media 9] [Media 10] [Media 11] [Media 12] [Media 13] [Media 14] [Media 15] [Media 16] [Media 17]

Fig. 3.
Fig. 3.

Change in diffraction signal for various speeds of aberrator translation (E=85.7 V/µm). (a) temporal decay in the diffraction efficiency as the aberrator begins to translate, (b) temporal growth in the diffraction efficiency as the translation of the aberrator is discontinued.

Fig. 4.
Fig. 4.

The the normalized diffraction efficiency, η0, as a function of the inverse of the rate of translation of the aberrating medium, 1/σ. The line is a guide for the eye.

Fig. 5.
Fig. 5.

Growth time constant, τ, and the parameter β as a function of rate of aberrator translation, σ. The lines are guides for eye.

Fig. 6.
Fig. 6.

Videos depicting the rapid movement of the aberrator followed by a sudden stop in its translation. The time stamps present in each frame offer a quantitative indication of the elapsed time. a) (1.19 MB) E=47.6 V/µm, and b) (1.62 MB) E=85.7 V/µm.

Fig. 7.
Fig. 7.

The external steady state diffraction efficiency, η0, determined via the novel forward FWM geometry as a function of the externally applied electric field, E. θ=-12°.

Fig. 8.
Fig. 8.

a) The intensity of the p-polarization component of I obj (I obj,p) as a function of θ measured prior to the PR sample, and b) the diffracted intensity of I obj (Iobj,p) as a function of θ. E=85.7 V/µm.

Fig. 9.
Fig. 9.

The external steady state diffraction efficiency, η0, determined via the novel forward FWM geometry as a function of the rotation of the polarization of I obj, θ. E=85.7 V/µm.

Fig. 10.
Fig. 10.

a) Example of asymmetric energy exchange between laser beams in the TBC experiment. The external electric field E=85.7 V/µm was applied at time t=114 s and turned off at t=209 s, and b) TBC gain coefficient, Γ, as a function of the externally applied electric field, E, for s-polarization and p-polarization.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

U obj Ψ ab + U ref 2 = I obj + I ref + U obj Ψ ab U ref * + U obj * Ψ ab * U ref ,
U obj U obj Ψ ab + U ref 2 = I obj U obj + I ref U obj + U obj 2 U ref * Ψ ab + I obj U ref Ψ ab * ,
U obj Ψ ab U obj Ψ ab + U ref 2 = I obj U obj Ψ ab
+ I ref U obj Ψ ab + U obj 2 Ψ ab 2 U ref * + U ref I obj
η 0 = I obj , p I obj , p ,
η ( t ) = η 0 { 1 exp [ ( t τ ) β ] } ,
Γ = L 1 [ ln ( γ 0 κ ) ln ( κ + 1 γ 0 ) ] ,
α = L 1 [ log ( I ref I ref ) ] ,

Metrics