Abstract

We demonstrate, for the first time, the dynamic correction of aberrated images in real-time using a polymeric composite with fast response times. The current novel experimental design is capable of restoring a phase aberrated, image carrying laser beam, to nearly its original quality. The ability to reconstruct images in real-time is demonstrated through the changing of the aberrating medium at various speeds. In addition, this technique allows for the correction of images in motion, demonstrated through the oscillatory movement of the resolution target. We also have demonstrated that important parameters of the materials in the study such as response times, diffraction efficiencies and optical gains all retain high figures of merit values under the current experimental conditions.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. Yitzhaky, I. Dror, and N. S. Kopeika, �??Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer function,�?? Opt. Eng. 36, 3064-3072 (1997).
    [CrossRef]
  2. M. C. Gower, �??Phase conjugation,�?? J. Mod. Opt. 35, 449-472 (1988).
    [CrossRef]
  3. C. L. Hayes, R. A. Brandewie, W. C. Davis, and G. E. Mevers, �??Experimental test of an infrared phase conjugation adaptive array,�?? J. Opt. Soc. Am. 67, 269-277 (1977).
    [CrossRef]
  4. W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, �??Polymeric photorefractive composite for holographic applications,�?? Polymer 42, 9863-9866 (2001).
    [CrossRef]
  5. T. Baade, A. Kiessling, and R. Kowarschik, �??A simple method for image restoration and image preprocessing using two-wave mixing in Bi12TiO20,�?? J. Opt. A-Pure Appl. Opt. 3, 250-254 (2001).
    [CrossRef]
  6. A. N. Simonov, A. V. Larichev, V. P. Shibaev, and A. I. Stakhanov, �??High-quality correction of wavefront distortions using low-power phase conjugation in azo dye containing LC polymer,�?? Opt. Commun. 197, 175-185 (2001).
    [CrossRef]
  7. A. Brignon, J.-P. Huignard, M. H. Garrett, and I. Mnushkina, �??Spatial beam cleanup of a Nd:YAG laser operating at 1.06 µm with two-wave mixing in Rh:BaTiO3,�?? Appl. Opt. 36, 7788-7793 (1997).
    [CrossRef]
  8. A. E. Chiou and P. Yeh, �??Laser-beam cleanup using photorefractive two-wave mixing and optical phase conjugation,�?? Opt. Lett. 11, 461-463 (1986).
    [CrossRef] [PubMed]
  9. A. E. T. Chiou and P. Yeh, �??Beam cleanup using photorefractive two-wave mixing,�?? Opt. Lett. 10, 621-623 (1985).
    [CrossRef] [PubMed]
  10. B. Kippelen, K. Meerholz, Sandalphon, B. L. Volodin, and N. Peyghambarian, �??Photorefractive polymers and their applications,�?? Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 283, 109-114 (1996).
    [CrossRef]
  11. W. E. Moerner and S. M. Silence, �??Polymeric photorefractive materials,�?? Chem. Rev. 94, 127-155 (1994).
    [CrossRef]
  12. V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, �??Dynamic self-diffraction of coherent light beams,�?? Uspekhi Fizicheskikh Nauk 129, 113-137 (1979).
    [CrossRef]
  13. D. L. Staebler and J. J. Amodei, �??Coupled-wave analysis of holographic storage in lithium niobate,�?? J. Appl. Phys. 34, 1042-1049 (1972).
    [CrossRef]
  14. G. S. Agarwal and E. Wolf, �??Theory of phase conjugation with weak scatterers,�?? J. Opt. Soc. Am. 72, 321 (1982).
    [CrossRef]
  15. J. Zhang, S. Yoshikado, and T. Aruga, �??Distorted image reconstruction using photorefractive effects,�?? J. Commun. Res. Lab. 49, 67-71 (2002).
  16. M. Tziraki1, R. Jones, P. M. W. French, M. R. Melloch, and D.D. Nolte, �??Photorefractive holography for imaging through turbidmedia using low coherence light,�?? Appl. Phys. B 70, 151�??154 (2000).
    [CrossRef]
  17. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, �??Depth-resolved holographic imaging through scattering media by photorefraction,�?? Opt. Lett. 20, 1331-1334 (1995).
    [CrossRef] [PubMed]
  18. E. Leith, H. Chen, Y. Chen, D. Dilworth, J. Lopez, R. Masri, J. Rudd, and J. Valdmanis, �??Electronic holography and speckle methods for imaging through tissue using femtosecond gated pulses,�?? Appl. Opt. 30, 4204-4210 (1991).
    [CrossRef] [PubMed]
  19. K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, �??Chrono-coherent imaging for medicine,�?? in Proceedings of IEEE Conference on Trans. Biomed. Eng. (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 1210-1221.
    [CrossRef]
  20. N. H. Abramson and K. G. Spears �??Single pulse light-in-flight recording by holography,�?? Appl. Opt. 28, 1834-1841 (1989).
    [CrossRef] [PubMed]
  21. M. A. Duguay and A. T. Mattick, �??Untrahigh speed photography of picosecond light pulses and echoes,�?? Appl. Opt. 10, 2162-2171 (1971).
    [CrossRef] [PubMed]
  22. E. Hendrickx, Y. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, �??Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores,�?? J. Mater. Chem. 9, 2251-2258 (1999).
    [CrossRef]
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).
  24. D. Wright, M. A. Díaz-García, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, �??High-speed photorefractive polymer composites,�?? Appl. Phys. Lett. 73, 1490-1492 (1998).
    [CrossRef]
  25. S. H. Chung and J. R. Stevens, �??Time-dependent correlation and the evaluation of the stretched exponential or Kohlrausch�??Williams�??Watts function,�?? Am. J. Phys. 11, 1024-1030 (1991).
    [CrossRef]
  26. J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, �??Observation of the photorefractive effect in a hybrid organic-inorganic nanocomposite,�?? J. Am. Chem. Soc. 121, 5287-5295 (1999).
    [CrossRef]
  27. B. Swedek, N. Cheng, Y. Cui, J. Zieba, J. Winiarz, and P. N. Prasad, �??Temperature-dependence studies of photorefractive effect in a low glass-transition-temperature polymer composite,�?? J. Appl. Phys. 82, 5923-5931 (1997).
    [CrossRef]
  28. Y. Cui, B. Swedek, N. Cheng, J. Zieba, and P. N. Prasad, �??Dynamics of photorefractive grating erasure in polymeric composites,�?? J. Appl. Phys. 85, 38-43 (1999).
    [CrossRef]
  29. H. Kogelnik, �??Coupled Wave Theory for Thick Hologram Gratings,�?? Bell Syst. Tech. J. 48, 2909-2945 (1969).

Am. J. Phys. (1)

S. H. Chung and J. R. Stevens, �??Time-dependent correlation and the evaluation of the stretched exponential or Kohlrausch�??Williams�??Watts function,�?? Am. J. Phys. 11, 1024-1030 (1991).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

M. Tziraki1, R. Jones, P. M. W. French, M. R. Melloch, and D.D. Nolte, �??Photorefractive holography for imaging through turbidmedia using low coherence light,�?? Appl. Phys. B 70, 151�??154 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

D. Wright, M. A. Díaz-García, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, �??High-speed photorefractive polymer composites,�?? Appl. Phys. Lett. 73, 1490-1492 (1998).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, �??Coupled Wave Theory for Thick Hologram Gratings,�?? Bell Syst. Tech. J. 48, 2909-2945 (1969).

Chem. Rev. (1)

W. E. Moerner and S. M. Silence, �??Polymeric photorefractive materials,�?? Chem. Rev. 94, 127-155 (1994).
[CrossRef]

J. Am. Chem. Soc. (1)

J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, and P. N. Prasad, �??Observation of the photorefractive effect in a hybrid organic-inorganic nanocomposite,�?? J. Am. Chem. Soc. 121, 5287-5295 (1999).
[CrossRef]

J. Appl. Phys (1)

B. Swedek, N. Cheng, Y. Cui, J. Zieba, J. Winiarz, and P. N. Prasad, �??Temperature-dependence studies of photorefractive effect in a low glass-transition-temperature polymer composite,�?? J. Appl. Phys. 82, 5923-5931 (1997).
[CrossRef]

J. Appl. Phys. (2)

Y. Cui, B. Swedek, N. Cheng, J. Zieba, and P. N. Prasad, �??Dynamics of photorefractive grating erasure in polymeric composites,�?? J. Appl. Phys. 85, 38-43 (1999).
[CrossRef]

D. L. Staebler and J. J. Amodei, �??Coupled-wave analysis of holographic storage in lithium niobate,�?? J. Appl. Phys. 34, 1042-1049 (1972).
[CrossRef]

J. Commun. Res. Lab. (1)

J. Zhang, S. Yoshikado, and T. Aruga, �??Distorted image reconstruction using photorefractive effects,�?? J. Commun. Res. Lab. 49, 67-71 (2002).

J. Mater. Chem. (1)

E. Hendrickx, Y. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, �??Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores,�?? J. Mater. Chem. 9, 2251-2258 (1999).
[CrossRef]

J. Mod. Opt. (1)

M. C. Gower, �??Phase conjugation,�?? J. Mod. Opt. 35, 449-472 (1988).
[CrossRef]

J. Opt. A-Pure Appl. Opt. (1)

T. Baade, A. Kiessling, and R. Kowarschik, �??A simple method for image restoration and image preprocessing using two-wave mixing in Bi12TiO20,�?? J. Opt. A-Pure Appl. Opt. 3, 250-254 (2001).
[CrossRef]

J. Opt. Soc. Am. (2)

Mol. Cryst. Liq. Cryst. Sci. Technol. (1)

B. Kippelen, K. Meerholz, Sandalphon, B. L. Volodin, and N. Peyghambarian, �??Photorefractive polymers and their applications,�?? Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 283, 109-114 (1996).
[CrossRef]

Opt. Commun. (1)

A. N. Simonov, A. V. Larichev, V. P. Shibaev, and A. I. Stakhanov, �??High-quality correction of wavefront distortions using low-power phase conjugation in azo dye containing LC polymer,�?? Opt. Commun. 197, 175-185 (2001).
[CrossRef]

Opt. Eng. (1)

Y. Yitzhaky, I. Dror, and N. S. Kopeika, �??Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer function,�?? Opt. Eng. 36, 3064-3072 (1997).
[CrossRef]

Opt. Lett. (3)

Polymer (1)

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, �??Polymeric photorefractive composite for holographic applications,�?? Polymer 42, 9863-9866 (2001).
[CrossRef]

Proc. IEEE (1)

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, �??Chrono-coherent imaging for medicine,�?? in Proceedings of IEEE Conference on Trans. Biomed. Eng. (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 1210-1221.
[CrossRef]

Uspekhi Fizicheskikh Nauk (1)

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, �??Dynamic self-diffraction of coherent light beams,�?? Uspekhi Fizicheskikh Nauk 129, 113-137 (1979).
[CrossRef]

Other (1)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).

Supplementary Material (19)

» Media 1: MPG (1684 KB)     
» Media 2: MPG (1725 KB)     
» Media 3: MPG (1725 KB)     
» Media 4: MPG (1725 KB)     
» Media 5: MPG (1725 KB)     
» Media 6: MPG (1725 KB)     
» Media 7: MPG (1725 KB)     
» Media 8: MPG (1725 KB)     
» Media 9: MPG (1725 KB)     
» Media 10: MPG (1725 KB)     
» Media 11: MPG (1725 KB)     
» Media 12: MPG (1725 KB)     
» Media 13: MPG (1725 KB)     
» Media 14: MPG (1725 KB)     
» Media 15: MPG (1725 KB)     
» Media 16: MPG (1725 KB)     
» Media 17: MPG (1725 KB)     
» Media 18: MPG (1725 KB)     
» Media 19: MPG (1725 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(1.68 MB) Schematic diagram depicting the experimental setup used for PR characterizations. The number in parentheses is the position of each relevant optical element with respect to the sample where negative (positive) numbers denote the input (output) side of the sample along the appropriate beam path. (λ/2)1, (λ/2)2, half-wave plates (-200 cm, -70 cm, respectively); L1–5, Lens, f L1=100 cm, f L2=15 cm, f L3=10 cm, f L4=7.5 cm, f L5=20 cm (-70 cm, -54.7 cm, -31.2 cm, -13.7 cm, 16.1 cm, respectively); AF, Air Force resolution target (-34.3 cm); AB, phase aberrating medium (-30.4 cm); PBS, polarizing beam splitter; PD, photodiode; CCD, charge-coupled-device camera (145 cm).

Fig. 2.
Fig. 2.

Corrected and uncorrected images obtained as the aberrator is moved at constant speed. The speed of aberrator translation in the remainder of the frames are as follows (all videos are 1.73 MB in size): a) 0.0025 mm/s; b) 0.0055 mm/s; c) 0.012 mm/s; d) 0.019 mm/s; e) 0.033 mm/s; f) 0.068 mm/s; g) 0.14 mm/s; and h) 0.32 mm/s. E=85.7 V/µm for all corrected images. [Media 2] [Media 3] [Media 4] [Media 5] [Media 6] [Media 7] [Media 8] [Media 9] [Media 10] [Media 11] [Media 12] [Media 13] [Media 14] [Media 15] [Media 16] [Media 17]

Fig. 3.
Fig. 3.

Change in diffraction signal for various speeds of aberrator translation (E=85.7 V/µm). (a) temporal decay in the diffraction efficiency as the aberrator begins to translate, (b) temporal growth in the diffraction efficiency as the translation of the aberrator is discontinued.

Fig. 4.
Fig. 4.

The the normalized diffraction efficiency, η0, as a function of the inverse of the rate of translation of the aberrating medium, 1/σ. The line is a guide for the eye.

Fig. 5.
Fig. 5.

Growth time constant, τ, and the parameter β as a function of rate of aberrator translation, σ. The lines are guides for eye.

Fig. 6.
Fig. 6.

Videos depicting the rapid movement of the aberrator followed by a sudden stop in its translation. The time stamps present in each frame offer a quantitative indication of the elapsed time. a) (1.19 MB) E=47.6 V/µm, and b) (1.62 MB) E=85.7 V/µm.

Fig. 7.
Fig. 7.

The external steady state diffraction efficiency, η0, determined via the novel forward FWM geometry as a function of the externally applied electric field, E. θ=-12°.

Fig. 8.
Fig. 8.

a) The intensity of the p-polarization component of I obj (I obj,p) as a function of θ measured prior to the PR sample, and b) the diffracted intensity of I obj (Iobj,p) as a function of θ. E=85.7 V/µm.

Fig. 9.
Fig. 9.

The external steady state diffraction efficiency, η0, determined via the novel forward FWM geometry as a function of the rotation of the polarization of I obj, θ. E=85.7 V/µm.

Fig. 10.
Fig. 10.

a) Example of asymmetric energy exchange between laser beams in the TBC experiment. The external electric field E=85.7 V/µm was applied at time t=114 s and turned off at t=209 s, and b) TBC gain coefficient, Γ, as a function of the externally applied electric field, E, for s-polarization and p-polarization.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

U obj Ψ ab + U ref 2 = I obj + I ref + U obj Ψ ab U ref * + U obj * Ψ ab * U ref ,
U obj U obj Ψ ab + U ref 2 = I obj U obj + I ref U obj + U obj 2 U ref * Ψ ab + I obj U ref Ψ ab * ,
U obj Ψ ab U obj Ψ ab + U ref 2 = I obj U obj Ψ ab
+ I ref U obj Ψ ab + U obj 2 Ψ ab 2 U ref * + U ref I obj
η 0 = I obj , p I obj , p ,
η ( t ) = η 0 { 1 exp [ ( t τ ) β ] } ,
Γ = L 1 [ ln ( γ 0 κ ) ln ( κ + 1 γ 0 ) ] ,
α = L 1 [ log ( I ref I ref ) ] ,

Metrics