Abstract

Germanium sulphide glass thin films have been deposited on CaF2 and Schott N-PSK58 glass substrates directly by means of chemical vapor deposition (CVD). The deposition rate of germanium sulphide glass film by this CVD process is estimated about 12 µm/hr at 500°C. These films have been characterized by micro-Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Their transmission range extends from 0.5µm to 7µm measured by UV-VIS-NIR and FT-IR spectroscopy. The refractive index of germanium sulphide glass film measured by prism coupling technique was 2.093±0.008 and the waveguide loss measured at 632.8nm by He-Ne laser was 2.1±0.3 dB/cm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. K. Mairaj, P. Hua, H. N. Rutt, D. W. Hewak, �??Fabrication and characterization of continuous wave direct UV (λ=244 nm) written channel waveguides in chalcogenide (Ga:La:S) glass,�?? J. Lightwave Technol. 20,1578-84 (2002 ).
    [CrossRef]
  2. Keiji Tanaka, �??Photoinduced process in Chalcogenide glass,�?? Current Opinion in Solid State & Materials Science 1, 567 (1996).
    [CrossRef]
  3. D. Marchese, M. De Sario, A. Jha, A. K. Kar, E. C. Smith, �??Highly nonlinear GeS2-based chalcogenide glass for all-optical twin-core-fibre switching,�?? J. Opt. Soc. Am. 15, 2361 (1998).
    [CrossRef]
  4. E. Marquez, T. Wagner, J.M. Gonzalez-Leal, A.M. Bernal-Oliva, R. Prieto-Alcon, R. Jimenez-Garay, P.J.S. Ewen, �??Controlling the optical constant of thermally-evaporated Ge10Sb30S60 chalcogenide glass films by photodoping with silver,�?? J. Non-Cryst. Solids 274, 62-68 (2000).
    [CrossRef]
  5. S. Ramachandran and S.G. Bishop, �??Excitation of Er3+ emission by host glass absorption in sputtered films of Er-doped Ge10As40Se25S25 glass,�?? Appl. Phys. Lett. 73, 3196 (1998),
    [CrossRef]
  6. D.S. Gill, R.W. Eason, C. Zaldo, H.N. Rutt, N.A. Vainos, �??Characterisation of Ga-La-S chalcogenide glass thin-film optical waveguides, fabricated by pulsed laser deposition,�?? J. Non-Cryst. Solids 191, 321-326 (1995)
    [CrossRef]
  7. J. Xu and R.M. Almeida, �??Preparation and Characterization of Germanium Sulphide Based Sol-Gel Planar Waveguides,�?? J. Sol-Gel Sci. Technol. 19, 243-248 (2000).
    [CrossRef]
  8. P. J. Melling, �??Alternative Methods of Preparing Chalcogenide Glasses,�?? Ceramic Bulletin 63, 1427-1429 (1984).
  9. E. Sleeckx, P. Nagels, R. Callaerts and M. Vanroy, �??Plasma-enhanced CVD of amorphous GexS1-x and GexSe1-x films,�?? J. de Physique IV 3, 419-426 (1993).
    [CrossRef]
  10. 10. A. Kovolov, �??Photo-induced Metastability in Amorphous Semiconductors,�?? 2003.
  11. Ihsan Barin, �??Thermochemical Data of Pure Substances,�?? third edition, 1995.
  12. I. P. Kotsalas and C. Raptis, �??High-temperature structural phase transitions of GexS1-x alloy studied by Raman spectroscopy,�?? Phys. Rev. B 64, 125210 (2001).
    [CrossRef]
  13. J.S. Sanghera and I.D. Aggarwal, �??Active and passive chalcogenide glass optical fibers for IR applications: a review,�?? J. Non-Cryst. Solids 256, 6-16 (1999).
    [CrossRef]
  14. R. Todorov, Tz. Iliev, and K. Petkov, �??Light-induced changes in the optical properties of thin films of Ge-S-Bi(Tl,In) chalcogenides,�?? J. Non-Cryst. Solids 326, 263-267 (2003).
    [CrossRef]

Appl. Phys. Lett. (1)

S. Ramachandran and S.G. Bishop, �??Excitation of Er3+ emission by host glass absorption in sputtered films of Er-doped Ge10As40Se25S25 glass,�?? Appl. Phys. Lett. 73, 3196 (1998),
[CrossRef]

Ceramic Bulletin (1)

P. J. Melling, �??Alternative Methods of Preparing Chalcogenide Glasses,�?? Ceramic Bulletin 63, 1427-1429 (1984).

J. de Physique IV (1)

E. Sleeckx, P. Nagels, R. Callaerts and M. Vanroy, �??Plasma-enhanced CVD of amorphous GexS1-x and GexSe1-x films,�?? J. de Physique IV 3, 419-426 (1993).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (4)

E. Marquez, T. Wagner, J.M. Gonzalez-Leal, A.M. Bernal-Oliva, R. Prieto-Alcon, R. Jimenez-Garay, P.J.S. Ewen, �??Controlling the optical constant of thermally-evaporated Ge10Sb30S60 chalcogenide glass films by photodoping with silver,�?? J. Non-Cryst. Solids 274, 62-68 (2000).
[CrossRef]

J.S. Sanghera and I.D. Aggarwal, �??Active and passive chalcogenide glass optical fibers for IR applications: a review,�?? J. Non-Cryst. Solids 256, 6-16 (1999).
[CrossRef]

R. Todorov, Tz. Iliev, and K. Petkov, �??Light-induced changes in the optical properties of thin films of Ge-S-Bi(Tl,In) chalcogenides,�?? J. Non-Cryst. Solids 326, 263-267 (2003).
[CrossRef]

D.S. Gill, R.W. Eason, C. Zaldo, H.N. Rutt, N.A. Vainos, �??Characterisation of Ga-La-S chalcogenide glass thin-film optical waveguides, fabricated by pulsed laser deposition,�?? J. Non-Cryst. Solids 191, 321-326 (1995)
[CrossRef]

J. Opt. Soc. Am. (1)

D. Marchese, M. De Sario, A. Jha, A. K. Kar, E. C. Smith, �??Highly nonlinear GeS2-based chalcogenide glass for all-optical twin-core-fibre switching,�?? J. Opt. Soc. Am. 15, 2361 (1998).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

J. Xu and R.M. Almeida, �??Preparation and Characterization of Germanium Sulphide Based Sol-Gel Planar Waveguides,�?? J. Sol-Gel Sci. Technol. 19, 243-248 (2000).
[CrossRef]

Phys. Rev. B (1)

I. P. Kotsalas and C. Raptis, �??High-temperature structural phase transitions of GexS1-x alloy studied by Raman spectroscopy,�?? Phys. Rev. B 64, 125210 (2001).
[CrossRef]

Solid State & Materials Science (1)

Keiji Tanaka, �??Photoinduced process in Chalcogenide glass,�?? Current Opinion in Solid State & Materials Science 1, 567 (1996).
[CrossRef]

Other (2)

10. A. Kovolov, �??Photo-induced Metastability in Amorphous Semiconductors,�?? 2003.

Ihsan Barin, �??Thermochemical Data of Pure Substances,�?? third edition, 1995.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Chemical vapour deposition (CVD) system for the germanium sulphide glass waveguide fabrication.

Fig. 2.
Fig. 2.

SEM picture from side view of the cleaved germanium sulphide glass films on CaF2 (left) and Schott N-PSK58 glass (right) substrates.

Fig. 3.
Fig. 3.

Raman spectrum of germanium sulphide glass film by CVD.

Fig. 4.
Fig. 4.

Optical transmission range of germanium sulphide glass by CVD.

Fig. 5.
Fig. 5.

XRD pattern of germanium sulphide glass film by CVD.

Fig. 6.
Fig. 6.

Prism coupling technique for refractive index measurement where np is the refractive index of the Rutile prism, n1 is the refractive index of germanium sulphide glass film, n2 is the refractive index of the substrate, φ is the incidence angle of He-Ne laser on the first surface, ε is the refracting angle of the Rutile prism, θp is the incidence angle of He-Ne laser on the second surface, θ1 is the refractive angle in the germanium sulphide glass film.

Fig. 7.
Fig. 7.

SEM picture of germanium sulphide glass channel waveguide by CVD and dry etching process.

Tables (2)

Tables Icon

Table 1. Feasibility of the reaction of H2S and GeCl4 to form GeS2

Tables Icon

Table 2. Effective Index of germanium sulphide glass film by prism coupling technique

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

GeCl 4 + 2 H 2 S GeS 2 + 4 HCl
Δ G r = Δ G f,products Δ G f,reactants
Effective index ( N ) = β k 0 = n 1 sin θ 1 = sin φ cos ε + ( n p 2 sin 2 φ ) 1 2 sin ε

Metrics