Abstract

We report a tunable microdoublet lens capable of creating dual modes of biconvex or meniscus lens. The microdoublet lens consists of a tunable liquid-filled lens and a solid negative lens. It can be tuned either by changing the shape of the liquid-filled lens into bi-convex or meniscus or by changing a filling media with different refractive index. The micro-fabrication is based on photopolymer microdispensing and elastomer micromolding methods. The microdoublet lens can provide a solution for minimizing optical aberrations and maximizing the tunability of focal length or field of view by controlling variable and fixed lens curvatures.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable liquid-filled microlens array integrated with microfluidic network

Nikolas Chronis, Gang L. Liu, Ki-Hun Jeong, and Luke P. Lee
Opt. Express 11(19) 2370-2378 (2003)

Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses

Seung Tae Choi, Byeong Soo Son, Gye Won Seo, Si-Young Park, and Kyung-Sick Lee
Opt. Express 22(5) 6133-6146 (2014)

Tunable microfluidic microlenses

Armin Werber and Hans Zappe
Appl. Opt. 44(16) 3238-3245 (2005)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
    [Crossref]
  2. J. Jang and B. Javidi, “Improvement of Viewing Angle in Integral Imaging by Use of Moving Lenslet Arrays with Low Fill Factor,” Appl. Opt. 42, 1996 (2003).
    [Crossref] [PubMed]
  3. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phy. Lett. 82, 316 (2003).
    [Crossref]
  4. L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157 (2000).
    [Crossref]
  5. D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phy. Lett. 82, 3171 (2003).
    [Crossref]
  6. N. Chronis, G. L. Liu, K. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2370
    [Crossref] [PubMed]
  7. S. Timoshenko, Theory of Plates and Shells, (McGraw-Hill, 1940).
  8. J. Seo, E. Ertekin, M. S. Pio, and L. P. Lee, “Self-assembly templates by selective plasma surface modification of micropatterned photoresist,” 15th IEEE International Micro Electro Mechanical Systems Conference, 192 (2002).

2003 (4)

2001 (1)

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[Crossref]

2000 (1)

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157 (2000).
[Crossref]

Berdichevsky, Y.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phy. Lett. 82, 3171 (2003).
[Crossref]

Choi, J.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phy. Lett. 82, 3171 (2003).
[Crossref]

Chronis, N.

Commander, L. G.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[Crossref]

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157 (2000).
[Crossref]

Day, S. E.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[Crossref]

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157 (2000).
[Crossref]

Ertekin, E.

J. Seo, E. Ertekin, M. S. Pio, and L. P. Lee, “Self-assembly templates by selective plasma surface modification of micropatterned photoresist,” 15th IEEE International Micro Electro Mechanical Systems Conference, 192 (2002).

Jang, J.

Javidi, B.

Jeong, K.

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phy. Lett. 82, 316 (2003).
[Crossref]

Lee, L. P.

N. Chronis, G. L. Liu, K. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2370
[Crossref] [PubMed]

J. Seo, E. Ertekin, M. S. Pio, and L. P. Lee, “Self-assembly templates by selective plasma surface modification of micropatterned photoresist,” 15th IEEE International Micro Electro Mechanical Systems Conference, 192 (2002).

Lien, V.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phy. Lett. 82, 3171 (2003).
[Crossref]

Liu, G. L.

Lo, Y.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phy. Lett. 82, 3171 (2003).
[Crossref]

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phy. Lett. 82, 316 (2003).
[Crossref]

McCabe, E. M.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[Crossref]

Pio, M. S.

J. Seo, E. Ertekin, M. S. Pio, and L. P. Lee, “Self-assembly templates by selective plasma surface modification of micropatterned photoresist,” 15th IEEE International Micro Electro Mechanical Systems Conference, 192 (2002).

Selviah, D. R.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[Crossref]

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157 (2000).
[Crossref]

Seo, J.

J. Seo, E. Ertekin, M. S. Pio, and L. P. Lee, “Self-assembly templates by selective plasma surface modification of micropatterned photoresist,” 15th IEEE International Micro Electro Mechanical Systems Conference, 192 (2002).

Smith, P. J.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[Crossref]

Taylor, C. M.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[Crossref]

Timoshenko, S.

S. Timoshenko, Theory of Plates and Shells, (McGraw-Hill, 1940).

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phy. Lett. 82, 316 (2003).
[Crossref]

Zhang, D.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phy. Lett. 82, 3171 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phy. Lett. (2)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phy. Lett. 82, 316 (2003).
[Crossref]

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phy. Lett. 82, 3171 (2003).
[Crossref]

Opt. Commun. (1)

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157 (2000).
[Crossref]

Opt. Express (1)

Rev. Sci. Instrum. (1)

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[Crossref]

Other (2)

S. Timoshenko, Theory of Plates and Shells, (McGraw-Hill, 1940).

J. Seo, E. Ertekin, M. S. Pio, and L. P. Lee, “Self-assembly templates by selective plasma surface modification of micropatterned photoresist,” 15th IEEE International Micro Electro Mechanical Systems Conference, 192 (2002).

Supplementary Material (1)

» Media 1: AVI (3287 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The basic configurations of a tunable microdoublet lens consisting of a tunable liquidfilled microlens and a solid negative lens of different refractive indices (nelastomer and nliquid) acting in combination.

Fig. 2.
Fig. 2.

Microfabrication procedure of tunable microdoublet lens array.

Fig. 3.
Fig. 3.

SEM images of tunable microdoublet lens array: (a) solid negative elastomer microlens before bonding with thin elastomer, (b) elastomer cavity with a distensible thin circular elastomer membrane, which is connected with microfluidic channels.

Fig. 4.
Fig. 4.

Lenslet profile and scanning electron microscopic image of a lenslet dispensed onto a hydrophobic ring confinement on lens mold.

Fig. 5.
Fig. 5.

Fixed lens curvatures vs. the nanoliter-scale microdroplet volume of a photopolymer dispensed onto a hydrophobic ring confinement with different inner diameters on a hydrophilic substrate of a lenslet mold.

Fig. 6.
Fig. 6.

Maximum deflection of circular silicone elastomer membranes according to the applied pressure drop: (a) with different membrane thickness and constant 500 µm in diameter, (b) with different membrane diameters and constant 16.66 µm in thickness.

Fig. 7.
Fig. 7.

Change of a variable lens curvature of a 350 µm in diameter and 27 µm thick circular elastomer membrane according to pressure drop between -10kPa to 10 kPa measured with optical interferometer.

Fig. 8.
Fig. 8.

Experimental set-up for focal length measurement(a) and the measured f-number of the microdoublet lens filled with DI water (nwater=1.33<nPDMS=1.41) and oil (noil=1.52>nPDMS=1.41) according to pressure changes (b). [Media 1]

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

w o = 0.662 a ( Δ P a Et ) 1 3
R v = ( w o 2 + φ 2 ) 2 w o
f = R v ( 1 n E ) + ( n L n E ) R v R f

Metrics