Abstract

A novel method for the procurement of full-color three-dimensional (3-D) images of real objects has been developed. This method is based on extracting information from 3-D Fourier spectra, which are calculated from several projection images recorded using a white light source. 3-D Fourier spectra for three colors were obtained separately for projection images recorded with a color-CCD camera. Three computer-generated holograms (CGHs) were then synthesized from those Fourier spectra. The resulting numerically and optically reconstructed full-color images are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. W. Lohmann and D. P. Paris, �??Binary Fraunhofer Holograms, Generated by Computer,�?? Appl. Opt. 6, 1739�??1748 (1967).
    [CrossRef] [PubMed]
  2. N. Yoshikawa and T. Yatagai, �??Phase optimization of a kinoform by simulated annealing,�?? Appl. Opt. 33, 863�??868 (1994).
    [CrossRef] [PubMed]
  3. M. Kitamura and T. Hamano, �??Computer-generated holograms for multilevel 3-D images with complex amplitudemodulation,�?? in Practical Holography XVI and Holographic Materials VIII, S. A. Benton, S. H. Stevenson and T. J. Trout, eds., Proc. SPIE 4659, 196�??204 (2002).
  4. T. Yatagai, �??Stereoscopic approach to 3-D display using computer-generated holograms,�?? Appl. Opt. 15, 2722�?? 2729 (1976).
    [CrossRef] [PubMed]
  5. M. C. King, A. M. Noll and D. H. Berry, �??A New Approach to Computer-Generated Holography,�?? Appl. Opt. 9, 471�??475 (1970).
    [CrossRef] [PubMed]
  6. D. Abookasis and J. Rosen, �??Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints,�?? J. Opt. Soc. Am. A 20, 1537�??1545 (2003).
    [CrossRef]
  7. Y. Sando, M. Itoh and T. Yatagai, �??Holographic three-dimensional display synthesized from three-dimensional Fourier spectra of real existing objects,�?? Opt. Lett. 28, 2518�??2520 (2003).
    [CrossRef] [PubMed]
  8. H. Yoshikawa and A. Kagotani, �??Full color computer-generated rainbow hologram with enlarged viewing angle,�?? Opt. Rev. 9, 251�??254 (2002).
    [CrossRef]
  9. T. Ito, T. Shimobaba, H. Godo and M. Horiuchi, �??Holographic reconstruction with a 10-um pixel-pitch reflective liquid-crystal display by use of a light-emitting diode reference light,�?? Opt. Lett. 27, 1406�??1408 (2002).
    [CrossRef]

Appl. Opt. (4)

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Opt. Rev. (1)

H. Yoshikawa and A. Kagotani, �??Full color computer-generated rainbow hologram with enlarged viewing angle,�?? Opt. Rev. 9, 251�??254 (2002).
[CrossRef]

Proc. SPIE 4659 (1)

M. Kitamura and T. Hamano, �??Computer-generated holograms for multilevel 3-D images with complex amplitudemodulation,�?? in Practical Holography XVI and Holographic Materials VIII, S. A. Benton, S. H. Stevenson and T. J. Trout, eds., Proc. SPIE 4659, 196�??204 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The recording optical system for projection images.

Fig. 2.
Fig. 2.

The virtual system for projection images.

Fig. 3.
Fig. 3.

Examples of projection images.

Fig. 4.
Fig. 4.

Simulation result of 3-D images.

Fig. 5.
Fig. 5.

Optical settup for full-color reconstruction: M-mirror, ND-ND Filter, BS-Beam Splitter.

Fig. 6.
Fig. 6.

Optical reconstruction of 3-D images.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

g ( x 0 , y 0 ) = O 1 ( x , y , z ) exp { i 2 π λ [ x 0 x + y 0 y f ( x 0 2 + y 0 2 ) z 2 f 2 ] } dxdydz ,
O 2 ( x ij , y ij ) = O 1 ( x ij , y ij , z ij ) d z ij ,
O 2 ( u ij , v ij ) = { O 1 }
= O 1 ( x ij , y ij , z ij ) exp [ i 2 π ( u ij x ij + v ij y ij ) ] d x ij d y ij d z ij .
u ij = 2 θ i α λ , v ij = 2 ϕ j α λ
h θ i , ϕ j = O 2 ( u ij , v ij ) v ij = 2 ϕ j α λ u ij = 2 θ i α λ
= O 1 ( x ij , y ij , z ij ) exp [ i 4 π α λ ( θ i x ij + ϕ j y ij ) ] d x ij d y ij d z ij ,
h θ i , ϕ j = O 1 ( x , y , z ) exp { i 2 π λ [ x x + y y f ( x 2 + y 2 ) z 2 f 2 ] } dxdydz ,
h θ i , ϕ j = O 1 ( x , y , z ) exp { i 2 π λ [ x x + y y f ( x 2 + y 2 ) α z 2 f 2 ] } dxdydz .
h θ i , ϕ j = 1 α O 1 ( x , y , z α ) exp { i 2 π λ [ x x + y y f ( x 2 + y 2 ) z 2 f 2 ] } dxdydz .
N 2 W = u ij max = 2 θ 0 α λ
α = 4 W θ 0 N λ

Metrics