Abstract

The calibration of multispectral and hyperspectral imaging systems is typically done in the laboratory using an integrating sphere, which usually produces a signal that is red rich. Using such a source to calibrate environmental monitoring systems presents some difficulties. Not only is much of the calibration data outside the range and spectral quality of data values that are expected to be captured in the field, using these measurements alone may exaggerate the optical flaws found within the system. Left unaccounted for, these flaws will become embedded in to the calibration, and thus, they will be passed on to the field data when the calibration is applied. To address these issues, we used a series of well-characterized spectral filters within our calibration. It provided us with a set us stable spectral standards to test and account for inadequacies in the spectral and radiometric integrity of the optical imager.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. R. Gordon and A. Morel, Remote assessment of ocean color for interpretation of satellite visible imagery, A review (Springer-Verlag, New York, 1983), p. 114.
  2. A. Morel, "Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters)," J. Geophys. Research 93(C9), 10, 749-710,768 (1988).
  3. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophys. Res. 93(D9), 10,909-910,924 (1988).
  4. C. Hu, K. L. Carder, and F. E. Muller-Karger, "Atmospheric Correction of SeaWiFS Imagery over Turbid Coastal Waters: A Practical Method," Remote Sensing of Environment. 74, no. 2 (2000).
    [CrossRef]
  5. D. Siegel, M. Wang, S. Maritorena, and W. Robinson, "Atmospheric corection of satellite ocean color imagery: the black pixel assumption," Appl. Opt. 39, 3582-3591 (2000).
    [CrossRef]
  6. H. R. Gordon and D. K. Clark, "Clear water radiances for atmospheric correction of coastal zone color scanner imagery," Appl. Opt. 20, 4175-4180 (1981).
    [CrossRef] [PubMed]
  7. K. Ruddick, F. Ovidio, and M. Rijkeboer, "Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters," App. Opt. 39, 897-912 (2000).
    [CrossRef]
  8. R. J. Birk and T. B. McCord, "Airborne Hyperspectral Sensor Systems," IEEE AES Systems Magazine 9, 26-33 (1994).
    [CrossRef]
  9. K. L. Carder, P. Reinersman, R. F. Chen, F. Müller-Karger, C. O. Davis, and M. Hamilton, "AVIRIS calibration and application in coastal oceanic environments," Remote Sensing of Environment 44, 205-216 (1993).
    [CrossRef]
  10. Z. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, "Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data," J. Geophys. Res. 106, 11,639-611,652 (2001).
    [CrossRef]
  11. D. D. R. Kohler, "An evaluation of a derivative based hyperspectral bathymetric algorithm," Dissertation Cornell University, Ithaca, NY, (2001).
  12. E. Louchard, R. Reid, F. Stephens, C. Davis, R. Leathers, and T. Downes, "Optical remote sensing of benthic habitats and bathymetry in coastal environments at Lee Stocking Island, Bahamas: A comparative spectral classification approach," Limnol. Oceanogr. 48, 511-521 (2003).
    [CrossRef]
  13. J. C. Sandidge and R. J. Holyer, "Coastal bathymetry from hyperspectral observations of water radiance," Remote Sensing of Environment 65, 341-352 (1998).
    [CrossRef]
  14. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization," Appl. Opt. 38, 3831-3843 (1999).
    [CrossRef]
  15. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters. 1. A semianalytical model," Appl. Opt. 37, 6329-6338 (1998).
    [CrossRef]
  16. R. O. Green, "Spectral calibration requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum," Appl. Opt. 37, 683-690 (1998).
    [CrossRef]
  17. C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett, and R. A. Reisse, "The Ocean PHILLS Hyperspectral Imager: Design, Characterization, and Calibration," Opt. Express 10, 210-221 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-4-210">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-4-210</a>.
    [CrossRef] [PubMed]
  18. A. Morel, "In-water and remote measurement of ocean color," Boundary-Layer Meteorology 18, 117-201 (1980).
    [CrossRef]
  19. C. M. Huang, B. E. Burke, B. B. Kosicki, R. W. Mountain, P. J. Daniels, D. C. Harrison, G. A. Lincoln, N. Usiak, M. A. Kaplan, and A. R. Forte, "A new process for thinned, back-illuminated CCD imager devices," presented at the International Symposium on VLSI Technology, New York, (1989).
  20. G. M. Williams, H. H. Marsh, and M. Hinds, "Back-illuminated CCD imagers for high information content digital photography," presented at the Digital Solid State Cameras: Designs and Applications, San Jose, CA, (1998).
  21. Scientific Imaging Technologies, Inc., "The CCD Imaging Array: An Introduction to Scientific Imaging Charge-Coupled Devices," Beaverton, Oregon, (1994).
  22. G. Meister, P. Abel, R. Barnes, J. Cooper, C. Davis, M. Godin, D. Goebel, G. Fargion, R. Frouin, D. Korwan, R. Maffione, C. McClain, S. McLean, D. Menzies, A. Poteau, J. Robertson, and J. Sherman, The First SIMBIOS Radiometric Intercomparison (SIMRIC-1), April-September 2001 (NASA Center for AeroSpace Information, Greenbelt, MD, 2002), Vol. NASA Technical Memorandum 2002-210006, p. 60.
  23. C. Cattrall, K. L. Carder, K. J. Thome, and H. R. Gordon, "Solar-reflectance-based calibration of spectral radiometers," Geophys.Res. Lett. 29, 2.1-2.4 (2002).
    [CrossRef]
  24. P. N. Slater, S. Biggar, J. M. Palmer, and K. J. Thome, "Unified approach to absolute radiometric calibration in the solar reflective range," Remote Sensing of Environment 77, 293-303 (2001).
    [CrossRef]
  25. A. Ryer, Light Measurement Handbook (International Light, Inc., Newburyport, MA, 1997), p. 64.
  26. C. D. Mobley, Light and Water (Academic Press, San Diego, CA, 1994), p. 592.
  27. B. Fougnie, R. Frouin, P. Lecomte, and P.-Y. Deschamps, "Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance," Appl. Opt. 38, 3844-3856 (1999).
    [CrossRef]
  28. B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, "Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space," Appl. Opt. 39, 887-896 (2000).
    [CrossRef]
  29. M. J. Montes, B. C. Gao, and C. O. Davis, "A new algorithm for atmospheric correction of hyperspectral remote sensing data," presented at the GeoSpatial Image and Data Exploration II, Orlando, FL, 2001.
  30. B.-C. Gao and C. O. Davis, "Development of a line by line based atmosphere removal algorithm for airborne and spaceborne imaging spectrometers," presented at the Imaging Spectrometry III, 1997.

App. Opt.

K. Ruddick, F. Ovidio, and M. Rijkeboer, "Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters," App. Opt. 39, 897-912 (2000).
[CrossRef]

Appl. Opt.

Boundary-Layer Meteorology

A. Morel, "In-water and remote measurement of ocean color," Boundary-Layer Meteorology 18, 117-201 (1980).
[CrossRef]

Digital Solid State Cameras: 1998

G. M. Williams, H. H. Marsh, and M. Hinds, "Back-illuminated CCD imagers for high information content digital photography," presented at the Digital Solid State Cameras: Designs and Applications, San Jose, CA, (1998).

Geophys.Res. Lett.

C. Cattrall, K. L. Carder, K. J. Thome, and H. R. Gordon, "Solar-reflectance-based calibration of spectral radiometers," Geophys.Res. Lett. 29, 2.1-2.4 (2002).
[CrossRef]

GeoSpatial Image and Data Exploration II

M. J. Montes, B. C. Gao, and C. O. Davis, "A new algorithm for atmospheric correction of hyperspectral remote sensing data," presented at the GeoSpatial Image and Data Exploration II, Orlando, FL, 2001.

IEEE AES Systems Magazine

R. J. Birk and T. B. McCord, "Airborne Hyperspectral Sensor Systems," IEEE AES Systems Magazine 9, 26-33 (1994).
[CrossRef]

Imaging Spectrometry III, 1997

B.-C. Gao and C. O. Davis, "Development of a line by line based atmosphere removal algorithm for airborne and spaceborne imaging spectrometers," presented at the Imaging Spectrometry III, 1997.

International Symposium on VLSI Tech '89

C. M. Huang, B. E. Burke, B. B. Kosicki, R. W. Mountain, P. J. Daniels, D. C. Harrison, G. A. Lincoln, N. Usiak, M. A. Kaplan, and A. R. Forte, "A new process for thinned, back-illuminated CCD imager devices," presented at the International Symposium on VLSI Technology, New York, (1989).

J. Geophys. Res.

Z. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, "Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data," J. Geophys. Res. 106, 11,639-611,652 (2001).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophys. Res. 93(D9), 10,909-910,924 (1988).

J. Geophys. Research

A. Morel, "Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters)," J. Geophys. Research 93(C9), 10, 749-710,768 (1988).

Limnol. Oceanogr.

E. Louchard, R. Reid, F. Stephens, C. Davis, R. Leathers, and T. Downes, "Optical remote sensing of benthic habitats and bathymetry in coastal environments at Lee Stocking Island, Bahamas: A comparative spectral classification approach," Limnol. Oceanogr. 48, 511-521 (2003).
[CrossRef]

NASA Technical Memorandum 2002-210006

G. Meister, P. Abel, R. Barnes, J. Cooper, C. Davis, M. Godin, D. Goebel, G. Fargion, R. Frouin, D. Korwan, R. Maffione, C. McClain, S. McLean, D. Menzies, A. Poteau, J. Robertson, and J. Sherman, The First SIMBIOS Radiometric Intercomparison (SIMRIC-1), April-September 2001 (NASA Center for AeroSpace Information, Greenbelt, MD, 2002), Vol. NASA Technical Memorandum 2002-210006, p. 60.

Opt. Express

Remote Sensing of Environment

C. Hu, K. L. Carder, and F. E. Muller-Karger, "Atmospheric Correction of SeaWiFS Imagery over Turbid Coastal Waters: A Practical Method," Remote Sensing of Environment. 74, no. 2 (2000).
[CrossRef]

P. N. Slater, S. Biggar, J. M. Palmer, and K. J. Thome, "Unified approach to absolute radiometric calibration in the solar reflective range," Remote Sensing of Environment 77, 293-303 (2001).
[CrossRef]

J. C. Sandidge and R. J. Holyer, "Coastal bathymetry from hyperspectral observations of water radiance," Remote Sensing of Environment 65, 341-352 (1998).
[CrossRef]

K. L. Carder, P. Reinersman, R. F. Chen, F. Müller-Karger, C. O. Davis, and M. Hamilton, "AVIRIS calibration and application in coastal oceanic environments," Remote Sensing of Environment 44, 205-216 (1993).
[CrossRef]

Other

D. D. R. Kohler, "An evaluation of a derivative based hyperspectral bathymetric algorithm," Dissertation Cornell University, Ithaca, NY, (2001).

A. Ryer, Light Measurement Handbook (International Light, Inc., Newburyport, MA, 1997), p. 64.

C. D. Mobley, Light and Water (Academic Press, San Diego, CA, 1994), p. 592.

H. R. Gordon and A. Morel, Remote assessment of ocean color for interpretation of satellite visible imagery, A review (Springer-Verlag, New York, 1983), p. 114.

Scientific Imaging Technologies, Inc., "The CCD Imaging Array: An Introduction to Scientific Imaging Charge-Coupled Devices," Beaverton, Oregon, (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

A first order regression of the spectral position of element lamps and observed PHILLS 2 spectral pixel for spatial position 300.

Fig. 2.
Fig. 2.

The observed PHILLS 2 spectral position of a 0.6328 micrometer laser across the full spatial range of the CCD. Note that one spectral position is approximately 4.6 nanometers.

Fig. 3.
Fig. 3.

A spectral smile map of the CCD illustrates the difference in nanometers between the spectral regression per spatial position and spectral regression at spatial position 280.

Fig. 4.
Fig. 4.

Two first order regressions describing the relationship between the viewing angle and observed PHILLS 2 spatial pixel at spectral pixel 35 (557 nm).

Fig. 5.
Fig. 5.

PHILLS 2 observed dark corrected sand and deep water spectra overlaid on the radiometric bounds of the of the integrating sphere with (blue and green) and without (blue only) the use of filters.

Fig. 6.
Fig. 6.

The PHILLS 2 derived filter transmissions compared to independent filter transmission measurements for spatial pixel 280: prior to placement of zero order mask (a), after placement of zero order mask (b), and after stray light – frame transfer smear was addressed (c). Note: only three of the six filters employed in the study are displayed.

Fig. 7.
Fig. 7.

First order regressions adequately describe the relationship between the sensor’s response and the physical reality for a variety of spectral and lamp intensities throughout the PHILLS 2’s spectral and spatial range.

Fig. 8.
Fig. 8.

A true color RGB (or B and W) image collect by the PHILLS 2 on October 29th, 2002 of Looe Key, FL. The location of the deep and shallow water ground truth stations used in this study are marked.

Fig. 9.
Fig. 9.

A comparison of the shallow (3.2m) water ground truth remote sensing reflectance and the corresponding results from both the PHILLS imagery run through the calibration with and without filters.

Fig. 10.
Fig. 10.

A comparison of the deep (62.5m) water ground truth remote sensing reflectance and the corresponding results from both the PHILLS imagery run through the calibration with and without filters.

Tables (1)

Tables Icon

Table 1. The atmospheric parameters used in the TAFKAA model runs on the PHILLS II data sets

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

T t = t i ( 1 r ) ( 1 r )
θ filter , λ = sin 1 [ n air sin ( θ air ) n filter , λ ]
r θ = N , λ = 1 2 [ ( sin ( θ air θ filter , λ ) sin ( θ air + θ filter , λ ) ) 2 + ( tan ( θ air θ filter , λ ) tan ( θ air + θ filter , λ ) ) 2 ]
r θ = N , λ = 1 2 [ ( sin ( θ filter , λ θ air ) sin ( θ filter , λ + θ air ) ) 2 + ( tan ( θ filter , λ θ air ) tan ( θ filter , λ + θ air ) ) 2 ]
r θ = 0 , λ = r θ = 0 , λ = [ n filter , λ 1 n filter , λ + 1 ] 2
log 10 ( t i , θ = 0 , λ ) log 10 ( t i , θ = N , λ ) = d θ = 0 , λ d θ = N , λ
d θ = 0 , λ d θ = N , λ = cos [ sin 1 ( sin ( θ air ) n air n filter , λ ) ]
T θ = N , λ = 10 ^ [ T θ = 0 , λ ( 1 r θ = 0 , λ ) ( 1 r θ = N , λ ) d θ = N , λ d θ = 0 , λ ] ( 1 r θ = N , λ ) ( 1 r θ = N , λ )
P T λ = d n filtered , λ d n unfiltered , λ
tdn 1 [ 1 ( p 12 + p 13 + ) ] + ( tdn 2 p 21 + tdn 3 p 31 + ) = mdn 1
mdn [ INV ( P ) ] = tdn
lamps filters λ abs [ mdn filtered INV ( P ) mdn unfiltered INV ( P ) tft ] 0

Metrics