Abstract

We demonstrate the generation of sub-picosecond optical pulses using a semiconductor optical amplifier (SOA) and a linear polarizer placed in a ring-laser configuration. Nonlinear polarization rotation in the SOA serves as the passive mode-locking mechanism. The ring cavity generates pulses with duration below 800 fs (FWHM) at a repetition rate of 14 MHz. The time -bandwidth product is 0.48. Simulation results in good agreement with the experimental results are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber

Kuei-Huei Lin, Jung-Jui Kang, Hsiao-Hua Wu, Chao-Kuei Lee, and Gong-Ru Lin
Opt. Express 17(6) 4806-4814 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, T. Yamamoto, and K. Tamura, “12.8 Tbit/s-70 km OTDM transmission using third- and fourth order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000)
    [Crossref]
  2. J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord, and D. Payne, “Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.
  3. M.E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997).
    [Crossref]
  4. L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort -pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
    [Crossref]
  5. M. E. Fermann, M. Hofer, F. Haberl, A. J. Schmidt, and L. Turi, “Additive-pulse-compression mode locking of a neodymium fiber laser,” Opt. Lett. 16, 244–245 (1991).
    [Crossref] [PubMed]
  6. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18, 220–222 (1993).
    [Crossref] [PubMed]
  7. H. A. Haus and E. P. Ippen, “Self-starting of passively mode-locked lasers,” Opt. Lett. 16, 1331–1333 (1991).
    [Crossref] [PubMed]
  8. M.H. Ober, M. Hofer, and M.E. Ferman, “42 fs pulse generation from a mode-locked laser starting with a moving mirror,” Opt. Lett. 18, 367–369 (1993).
    [Crossref] [PubMed]
  9. H. Takara, S. Kawanishi, and M. Saruwatari, “Highly stable, actively mode-locked Er-doped fiber laser utilizing relaxation oscillation as detuning monitor,” IEICE Transactions on Electronics,  E81-C, 213–219 (1998)
  10. M. Hill, H. de Waardt, G.-D. Khoe, and H. J. S. Dorren, “Short-Pulse generation in interferometers employing semiconductor optical amplifiers,” IEEE J. Quantum Electron. 39, 886–896 (2003).
    [Crossref]
  11. R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolitch mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
    [Crossref]
  12. R.G.M.P. Koumans and R van Roijen, “Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion and pulse collisions,” IEEE J. Quantum Electron. 32, 478–492 (1996).
    [Crossref]
  13. H. J. S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, and G.D. Khoe, “Nonlinear Polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
    [Crossref]
  14. N. Calabretta, Y. Liu, F. Huijskens, M.T. Hill, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,” J. Lightwave Technol. 15, 372–381 (2004).
    [Crossref]
  15. X. Yang, D. Lenstra, G.D. Khoe, and H.J.S. Dorren, “Rate equation model of nonlinear polarization rotation induced by ultrashort pulses in a semiconductor optical amplifier,” Opt. Commun. 223, 169–179 (2003).
    [Crossref]
  16. A.D. Kim, J.N. Kutz, and D.J. Muraki, “Pulse train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,” IEEE J. Quantum Electron. 36, 465–471 (2000).
    [Crossref]
  17. Z. Li, D. Lenstra, X. Yang, E. Tangdiongga, H. Ju, G.D. Khoe, and H.J.S. Dorren, “Simulation of mode-locked ring laser based on nonlinear polarization rotation in a semiconductor optical amplifier,” in preparat ion.

2004 (1)

N. Calabretta, Y. Liu, F. Huijskens, M.T. Hill, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,” J. Lightwave Technol. 15, 372–381 (2004).
[Crossref]

2003 (4)

X. Yang, D. Lenstra, G.D. Khoe, and H.J.S. Dorren, “Rate equation model of nonlinear polarization rotation induced by ultrashort pulses in a semiconductor optical amplifier,” Opt. Commun. 223, 169–179 (2003).
[Crossref]

M. Hill, H. de Waardt, G.-D. Khoe, and H. J. S. Dorren, “Short-Pulse generation in interferometers employing semiconductor optical amplifiers,” IEEE J. Quantum Electron. 39, 886–896 (2003).
[Crossref]

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolitch mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[Crossref]

H. J. S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, and G.D. Khoe, “Nonlinear Polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[Crossref]

2000 (2)

A.D. Kim, J.N. Kutz, and D.J. Muraki, “Pulse train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,” IEEE J. Quantum Electron. 36, 465–471 (2000).
[Crossref]

M. Nakazawa, T. Yamamoto, and K. Tamura, “12.8 Tbit/s-70 km OTDM transmission using third- and fourth order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000)
[Crossref]

1998 (1)

H. Takara, S. Kawanishi, and M. Saruwatari, “Highly stable, actively mode-locked Er-doped fiber laser utilizing relaxation oscillation as detuning monitor,” IEICE Transactions on Electronics,  E81-C, 213–219 (1998)

1997 (2)

M.E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997).
[Crossref]

L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort -pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

1996 (1)

R.G.M.P. Koumans and R van Roijen, “Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion and pulse collisions,” IEEE J. Quantum Electron. 32, 478–492 (1996).
[Crossref]

1993 (2)

1991 (2)

Calabretta, N.

N. Calabretta, Y. Liu, F. Huijskens, M.T. Hill, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,” J. Lightwave Technol. 15, 372–381 (2004).
[Crossref]

de Waardt, H.

N. Calabretta, Y. Liu, F. Huijskens, M.T. Hill, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,” J. Lightwave Technol. 15, 372–381 (2004).
[Crossref]

M. Hill, H. de Waardt, G.-D. Khoe, and H. J. S. Dorren, “Short-Pulse generation in interferometers employing semiconductor optical amplifiers,” IEEE J. Quantum Electron. 39, 886–896 (2003).
[Crossref]

J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord, and D. Payne, “Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.

Dorren, H. J. S.

M. Hill, H. de Waardt, G.-D. Khoe, and H. J. S. Dorren, “Short-Pulse generation in interferometers employing semiconductor optical amplifiers,” IEEE J. Quantum Electron. 39, 886–896 (2003).
[Crossref]

H. J. S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, and G.D. Khoe, “Nonlinear Polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[Crossref]

Dorren, H.J.S.

N. Calabretta, Y. Liu, F. Huijskens, M.T. Hill, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,” J. Lightwave Technol. 15, 372–381 (2004).
[Crossref]

X. Yang, D. Lenstra, G.D. Khoe, and H.J.S. Dorren, “Rate equation model of nonlinear polarization rotation induced by ultrashort pulses in a semiconductor optical amplifier,” Opt. Commun. 223, 169–179 (2003).
[Crossref]

Z. Li, D. Lenstra, X. Yang, E. Tangdiongga, H. Ju, G.D. Khoe, and H.J.S. Dorren, “Simulation of mode-locked ring laser based on nonlinear polarization rotation in a semiconductor optical amplifier,” in preparat ion.

Ebert, W.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolitch mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[Crossref]

Ferman, M.E.

Fermann, M. E.

Fermann, M.E.

M.E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997).
[Crossref]

Fidorra, S.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolitch mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[Crossref]

Fujimoto, J. G.

Galvanauskas, A.

M.E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997).
[Crossref]

Haberl, F.

Harter, D.

M.E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997).
[Crossref]

Haus, H. A.

Haus, H.A.

L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort -pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Heidrich, H.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolitch mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[Crossref]

Hill, M.

M. Hill, H. de Waardt, G.-D. Khoe, and H. J. S. Dorren, “Short-Pulse generation in interferometers employing semiconductor optical amplifiers,” IEEE J. Quantum Electron. 39, 886–896 (2003).
[Crossref]

Hill, M.T.

N. Calabretta, Y. Liu, F. Huijskens, M.T. Hill, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,” J. Lightwave Technol. 15, 372–381 (2004).
[Crossref]

H. J. S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, and G.D. Khoe, “Nonlinear Polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[Crossref]

Hofer, M.

Huijskens, F.

N. Calabretta, Y. Liu, F. Huijskens, M.T. Hill, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,” J. Lightwave Technol. 15, 372–381 (2004).
[Crossref]

Hüttl, B.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolitch mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[Crossref]

Ippen, E. P.

Ippen, E.P.

L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort -pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Jacobson, J.

Jones, D.J.

L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort -pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Ju, H.

Z. Li, D. Lenstra, X. Yang, E. Tangdiongga, H. Ju, G.D. Khoe, and H.J.S. Dorren, “Simulation of mode-locked ring laser based on nonlinear polarization rotation in a semiconductor optical amplifier,” in preparat ion.

Kaiser, R.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolitch mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[Crossref]

Kawanishi, S.

H. Takara, S. Kawanishi, and M. Saruwatari, “Highly stable, actively mode-locked Er-doped fiber laser utilizing relaxation oscillation as detuning monitor,” IEICE Transactions on Electronics,  E81-C, 213–219 (1998)

Khoe, G.D.

N. Calabretta, Y. Liu, F. Huijskens, M.T. Hill, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,” J. Lightwave Technol. 15, 372–381 (2004).
[Crossref]

H. J. S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, and G.D. Khoe, “Nonlinear Polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[Crossref]

X. Yang, D. Lenstra, G.D. Khoe, and H.J.S. Dorren, “Rate equation model of nonlinear polarization rotation induced by ultrashort pulses in a semiconductor optical amplifier,” Opt. Commun. 223, 169–179 (2003).
[Crossref]

Z. Li, D. Lenstra, X. Yang, E. Tangdiongga, H. Ju, G.D. Khoe, and H.J.S. Dorren, “Simulation of mode-locked ring laser based on nonlinear polarization rotation in a semiconductor optical amplifier,” in preparat ion.

J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord, and D. Payne, “Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.

Khoe, G.-D.

M. Hill, H. de Waardt, G.-D. Khoe, and H. J. S. Dorren, “Short-Pulse generation in interferometers employing semiconductor optical amplifiers,” IEEE J. Quantum Electron. 39, 886–896 (2003).
[Crossref]

Kim, A.D.

A.D. Kim, J.N. Kutz, and D.J. Muraki, “Pulse train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,” IEEE J. Quantum Electron. 36, 465–471 (2000).
[Crossref]

Koumans, R.G.M.P.

R.G.M.P. Koumans and R van Roijen, “Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion and pulse collisions,” IEEE J. Quantum Electron. 32, 478–492 (1996).
[Crossref]

Kutz, J.N.

A.D. Kim, J.N. Kutz, and D.J. Muraki, “Pulse train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,” IEEE J. Quantum Electron. 36, 465–471 (2000).
[Crossref]

Lehmann, G.

J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord, and D. Payne, “Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.

Lenstra, D.

X. Yang, D. Lenstra, G.D. Khoe, and H.J.S. Dorren, “Rate equation model of nonlinear polarization rotation induced by ultrashort pulses in a semiconductor optical amplifier,” Opt. Commun. 223, 169–179 (2003).
[Crossref]

H. J. S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, and G.D. Khoe, “Nonlinear Polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[Crossref]

Z. Li, D. Lenstra, X. Yang, E. Tangdiongga, H. Ju, G.D. Khoe, and H.J.S. Dorren, “Simulation of mode-locked ring laser based on nonlinear polarization rotation in a semiconductor optical amplifier,” in preparat ion.

Li, Z.

Z. Li, D. Lenstra, X. Yang, E. Tangdiongga, H. Ju, G.D. Khoe, and H.J.S. Dorren, “Simulation of mode-locked ring laser based on nonlinear polarization rotation in a semiconductor optical amplifier,” in preparat ion.

Liu, Y.

N. Calabretta, Y. Liu, F. Huijskens, M.T. Hill, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,” J. Lightwave Technol. 15, 372–381 (2004).
[Crossref]

H. J. S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, and G.D. Khoe, “Nonlinear Polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[Crossref]

Lord, A.

J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord, and D. Payne, “Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.

Muraki, D.J.

A.D. Kim, J.N. Kutz, and D.J. Muraki, “Pulse train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,” IEEE J. Quantum Electron. 36, 465–471 (2000).
[Crossref]

Nakazawa, M.

M. Nakazawa, T. Yamamoto, and K. Tamura, “12.8 Tbit/s-70 km OTDM transmission using third- and fourth order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000)
[Crossref]

Nelson, L.E.

L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort -pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Ober, M.H.

Payne, D.

J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord, and D. Payne, “Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.

Rehbein, W.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolitch mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[Crossref]

Rohde, H.

J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord, and D. Payne, “Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.

Sahin, G.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolitch mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[Crossref]

Saruwatari, M.

H. Takara, S. Kawanishi, and M. Saruwatari, “Highly stable, actively mode-locked Er-doped fiber laser utilizing relaxation oscillation as detuning monitor,” IEICE Transactions on Electronics,  E81-C, 213–219 (1998)

Schairer, W.

J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord, and D. Payne, “Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.

Schmidt, A. J.

Sikora, E.S.R.

J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord, and D. Payne, “Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.

Stenzel, R.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolitch mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[Crossref]

Stolpe, H.

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolitch mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[Crossref]

Sucha, G.

M.E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997).
[Crossref]

Takara, H.

H. Takara, S. Kawanishi, and M. Saruwatari, “Highly stable, actively mode-locked Er-doped fiber laser utilizing relaxation oscillation as detuning monitor,” IEICE Transactions on Electronics,  E81-C, 213–219 (1998)

Tamura, K.

M. Nakazawa, T. Yamamoto, and K. Tamura, “12.8 Tbit/s-70 km OTDM transmission using third- and fourth order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000)
[Crossref]

L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort -pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18, 220–222 (1993).
[Crossref] [PubMed]

Tangdiongga, E.

Z. Li, D. Lenstra, X. Yang, E. Tangdiongga, H. Ju, G.D. Khoe, and H.J.S. Dorren, “Simulation of mode-locked ring laser based on nonlinear polarization rotation in a semiconductor optical amplifier,” in preparat ion.

J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord, and D. Payne, “Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.

Turi, L.

Turkiewicz, J.P.

J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord, and D. Payne, “Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.

van Roijen, R

R.G.M.P. Koumans and R van Roijen, “Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion and pulse collisions,” IEEE J. Quantum Electron. 32, 478–492 (1996).
[Crossref]

Yamamoto, T.

M. Nakazawa, T. Yamamoto, and K. Tamura, “12.8 Tbit/s-70 km OTDM transmission using third- and fourth order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000)
[Crossref]

Yang, X.

X. Yang, D. Lenstra, G.D. Khoe, and H.J.S. Dorren, “Rate equation model of nonlinear polarization rotation induced by ultrashort pulses in a semiconductor optical amplifier,” Opt. Commun. 223, 169–179 (2003).
[Crossref]

Z. Li, D. Lenstra, X. Yang, E. Tangdiongga, H. Ju, G.D. Khoe, and H.J.S. Dorren, “Simulation of mode-locked ring laser based on nonlinear polarization rotation in a semiconductor optical amplifier,” in preparat ion.

Zhou, Y.R.

J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord, and D. Payne, “Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.

Appl. Phys. B (2)

M.E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997).
[Crossref]

L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen, “Ultrashort -pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Electron. Lett. (1)

M. Nakazawa, T. Yamamoto, and K. Tamura, “12.8 Tbit/s-70 km OTDM transmission using third- and fourth order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000)
[Crossref]

IEEE J. Quantum Electron. (4)

M. Hill, H. de Waardt, G.-D. Khoe, and H. J. S. Dorren, “Short-Pulse generation in interferometers employing semiconductor optical amplifiers,” IEEE J. Quantum Electron. 39, 886–896 (2003).
[Crossref]

R.G.M.P. Koumans and R van Roijen, “Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion and pulse collisions,” IEEE J. Quantum Electron. 32, 478–492 (1996).
[Crossref]

H. J. S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, and G.D. Khoe, “Nonlinear Polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[Crossref]

A.D. Kim, J.N. Kutz, and D.J. Muraki, “Pulse train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,” IEEE J. Quantum Electron. 36, 465–471 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolitch mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003).
[Crossref]

IEICE Transactions on Electronics (1)

H. Takara, S. Kawanishi, and M. Saruwatari, “Highly stable, actively mode-locked Er-doped fiber laser utilizing relaxation oscillation as detuning monitor,” IEICE Transactions on Electronics,  E81-C, 213–219 (1998)

J. Lightwave Technol. (1)

N. Calabretta, Y. Liu, F. Huijskens, M.T. Hill, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,” J. Lightwave Technol. 15, 372–381 (2004).
[Crossref]

Opt. Commun. (1)

X. Yang, D. Lenstra, G.D. Khoe, and H.J.S. Dorren, “Rate equation model of nonlinear polarization rotation induced by ultrashort pulses in a semiconductor optical amplifier,” Opt. Commun. 223, 169–179 (2003).
[Crossref]

Opt. Lett. (4)

Other (2)

J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord, and D. Payne, “Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber,” in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.

Z. Li, D. Lenstra, X. Yang, E. Tangdiongga, H. Ju, G.D. Khoe, and H.J.S. Dorren, “Simulation of mode-locked ring laser based on nonlinear polarization rotation in a semiconductor optical amplifier,” in preparat ion.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental set-up of the SOA based ring-laser. SOA: semiconductor optical amplifier, PC1 and PC2: polarization controllers, PBS: polarizing beam-splitter.

Fig. 2.
Fig. 2.

Numerical simulation of the pulse evolution. The solid curves represent the powers and the dashed curves are corresponding normalized intensity auto-correlations. Initially the pulse had duration of 10 ps and the pulse energy was 0.5 pJ. After 5 roundtrips the pulse duration has decreased to 5.3 ps. The pulse energy has increased to 8.9 pJ. After 35 roundtrips the pulse has shortened further to 1.7 ps and the pulse build-up has stabilized.

Fig. 3.
Fig. 3.

The optical spectra corresponding to Fig. 2. Initially the spectral-width was 44 GHz. After 5 roundtrips, the spectral-width has increased to 0.2 THz, and after 35 roundtrips the spectral-width has become 0.4 THz.

Fig. 4.
Fig. 4.

Autocorrelation trace (a) and the spectrum (b) of the pulses. Assuming a sech2 pulse shape, the pulse width (FWHM) is about 800 fs.

Metrics