Abstract

We demonstrate the generation of sub-picosecond optical pulses using a semiconductor optical amplifier (SOA) and a linear polarizer placed in a ring-laser configuration. Nonlinear polarization rotation in the SOA serves as the passive mode-locking mechanism. The ring cavity generates pulses with duration below 800 fs (FWHM) at a repetition rate of 14 MHz. The time -bandwidth product is 0.48. Simulation results in good agreement with the experimental results are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Nakazawa, T. Yamamoto and K. Tamura, �??12.8 Tbit/s-70 km OTDM transmission using third- and fourth order simultaneous dispersion compensation with a phase modulator," Electron. Lett. 36, 2027-2029 (2000)
    [CrossRef]
  2. J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord and D. Payne, "Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber," in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.
  3. M.E. Fermann, A. Galvanauskas, G. Sucha and D. Harter, �??Fiber-lasers for ultrafast optics,�?? Appl. Phys. B 65, 259�??275 (1997).
    [CrossRef]
  4. L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus and E.P. Ippen, �??Ultrashort -pulse fiber ring lasers,�?? Appl. Phys. B 65, 277�??294 (1997).
    [CrossRef]
  5. M. E. Fermann, M. Hofer, F. Haberl, A. J. Schmidt and L. Turi, �??Additive-pulse-compression mode locking of a neodymium fiber laser,�?? Opt. Lett. 16, 244-245 (1991).
    [CrossRef] [PubMed]
  6. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus and J. G. Fujimoto, �??Unidirectional ring resonators for self-starting passively mode-locked lasers,�?? Opt. Lett. 18, 220-222 (1993).
    [CrossRef] [PubMed]
  7. H. A. Haus and E. P. Ippen, �??Self-starting of passively mode-locked lasers,�?? Opt. Lett. 16, 1331-1333 (1991).
    [CrossRef] [PubMed]
  8. M.H. Ober, M. Hofer and M.E. Ferman, �??42 fs pulse generation from a mode-locked laser starting with a moving mirror,�?? Opt. Lett. 18, 367-369 (1993).
    [CrossRef] [PubMed]
  9. H. Takara, S. Kawanishi and M. Saruwatari, �??Highly stable, actively mode-locked Er-doped fiber laser utilizing relaxation oscillation as detuning monitor,�?? IEICE Transactions on Electronics, E81-C, 213-219 (1998)
  10. M. Hill, H. de Waardt, G.-D. Khoe and H. J. S. Dorren, �??Short-Pulse generation in interferometers employing semiconductor optical amplifiers,�?? IEEE J. Quantum Electron. 39, 886 �??896 (2003).
    [CrossRef]
  11. R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert and G. Sahin, �??Tunable monolitch mode-locked lasers on InP with low timing jitter,�?? IEEE Photon. Technol. Lett. 15, 634-636 (2003).
    [CrossRef]
  12. R.G.M.P. Koumans and R van Roijen, �??Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion and pulse collisions,�?? IEEE J. Quantum Electron. 32, 478-492 (1996).
    [CrossRef]
  13. H. J. S. Dorren, D. Lenstra, Y. Liu, M.T. Hill and G.D. Khoe, �??Nonlinear Polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,�?? IEEE J. Quantum Electron. 39, 141�??148 (2003).
    [CrossRef]
  14. N. Calabretta, Y. Liu, F. Huijskens, M.T. Hill, H. de Waardt, G.D. Khoe and H.J.S. Dorren, �??Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,�?? J. Lightwave Technol. 15, 372-381 (2004).
    [CrossRef]
  15. X. Yang, D. Lenstra, G.D. Khoe and H.J.S. Dorren, �??Rate equation model of nonlinear polarization rotation induced by ultrashort pulses in a semiconductor optical amplifier,�?? Opt. Commun. 223, 169-179 (2003).
    [CrossRef]
  16. A.D. Kim, J.N. Kutz and D.J. Muraki, �??Pulse train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,�?? IEEE J. Quantum Electron. 36, 465-471 (2000).
    [CrossRef]
  17. Z. Li, D. Lenstra, X.Yang, E. Tangdiongga, H. Ju, G.D. Khoe and H.J.S. Dorren, �??Simulation of mode-locked ring laser based on nonlinear polarization rotation in a semiconductor optical amplifier,�?? in preparation.

Appl. Phys. B (1)

L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus and E.P. Ippen, �??Ultrashort -pulse fiber ring lasers,�?? Appl. Phys. B 65, 277�??294 (1997).
[CrossRef]

Appl. Phys. B` (1)

M.E. Fermann, A. Galvanauskas, G. Sucha and D. Harter, �??Fiber-lasers for ultrafast optics,�?? Appl. Phys. B 65, 259�??275 (1997).
[CrossRef]

Electron. Lett. (1)

M. Nakazawa, T. Yamamoto and K. Tamura, �??12.8 Tbit/s-70 km OTDM transmission using third- and fourth order simultaneous dispersion compensation with a phase modulator," Electron. Lett. 36, 2027-2029 (2000)
[CrossRef]

IEEE J. Quantum Electron. (4)

R.G.M.P. Koumans and R van Roijen, �??Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion and pulse collisions,�?? IEEE J. Quantum Electron. 32, 478-492 (1996).
[CrossRef]

H. J. S. Dorren, D. Lenstra, Y. Liu, M.T. Hill and G.D. Khoe, �??Nonlinear Polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,�?? IEEE J. Quantum Electron. 39, 141�??148 (2003).
[CrossRef]

M. Hill, H. de Waardt, G.-D. Khoe and H. J. S. Dorren, �??Short-Pulse generation in interferometers employing semiconductor optical amplifiers,�?? IEEE J. Quantum Electron. 39, 886 �??896 (2003).
[CrossRef]

A.D. Kim, J.N. Kutz and D.J. Muraki, �??Pulse train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,�?? IEEE J. Quantum Electron. 36, 465-471 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert and G. Sahin, �??Tunable monolitch mode-locked lasers on InP with low timing jitter,�?? IEEE Photon. Technol. Lett. 15, 634-636 (2003).
[CrossRef]

IEICE Transactions on Electronics (1)

H. Takara, S. Kawanishi and M. Saruwatari, �??Highly stable, actively mode-locked Er-doped fiber laser utilizing relaxation oscillation as detuning monitor,�?? IEICE Transactions on Electronics, E81-C, 213-219 (1998)

J. Lightwave Technol. (1)

N. Calabretta, Y. Liu, F. Huijskens, M.T. Hill, H. de Waardt, G.D. Khoe and H.J.S. Dorren, �??Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,�?? J. Lightwave Technol. 15, 372-381 (2004).
[CrossRef]

OFC 2004 Postdeadline paper (1)

J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord and D. Payne, "Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber," in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.

Opt. Commun. (1)

X. Yang, D. Lenstra, G.D. Khoe and H.J.S. Dorren, �??Rate equation model of nonlinear polarization rotation induced by ultrashort pulses in a semiconductor optical amplifier,�?? Opt. Commun. 223, 169-179 (2003).
[CrossRef]

Opt. Lett. (4)

Other (1)

Z. Li, D. Lenstra, X.Yang, E. Tangdiongga, H. Ju, G.D. Khoe and H.J.S. Dorren, �??Simulation of mode-locked ring laser based on nonlinear polarization rotation in a semiconductor optical amplifier,�?? in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental set-up of the SOA based ring-laser. SOA: semiconductor optical amplifier, PC1 and PC2: polarization controllers, PBS: polarizing beam-splitter.

Fig. 2.
Fig. 2.

Numerical simulation of the pulse evolution. The solid curves represent the powers and the dashed curves are corresponding normalized intensity auto-correlations. Initially the pulse had duration of 10 ps and the pulse energy was 0.5 pJ. After 5 roundtrips the pulse duration has decreased to 5.3 ps. The pulse energy has increased to 8.9 pJ. After 35 roundtrips the pulse has shortened further to 1.7 ps and the pulse build-up has stabilized.

Fig. 3.
Fig. 3.

The optical spectra corresponding to Fig. 2. Initially the spectral-width was 44 GHz. After 5 roundtrips, the spectral-width has increased to 0.2 THz, and after 35 roundtrips the spectral-width has become 0.4 THz.

Fig. 4.
Fig. 4.

Autocorrelation trace (a) and the spectrum (b) of the pulses. Assuming a sech2 pulse shape, the pulse width (FWHM) is about 800 fs.

Metrics