Abstract

The fundamental limits to the compressibility of broadband supercontinuum spectra generated in photonic crystal fiber are examined using numerical simulations based on a stochastic extended nonlinear Schrödinger equation. An ensemble average over multiple simulations performed with random quantum noise on the input pulse and spontaneous Raman noise during propagation allows a quantitative study of the effects of pulse to pulse fluctuations on the ability to obtain few-cycle pulses after compensation of the supercontinuum spectral phase. We study the dependence of the supercontinuum compressibility on the input pulse duration, the photonic crystal fiber length, and the spectral resolution of the pulse compressor employed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. See, for example, the special issue of Appl. Phys. B 77, no. 2-3 (2003)
  2. T. Sudmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, U. Keller, �??Nonlinear femtosecond pulse compression at high average power levels by use of a large mode-area holey fiber,�?? Opt. Lett. 28, 1951-1953 (2003).
    [CrossRef] [PubMed]
  3. G. McConnell and E. Riis, �??Ultrashort pulse compression using photonic crystal fiber,�?? Appl. Phys. B 78, 557-564 (2004).
    [CrossRef]
  4. J. M. Dudley and S. Coen, �??The compressibility of supercontinuum spectra generated in photonic crystal fiber,�?? Proceedings of the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (CLEO/Europe-EQEC 2003), Europhysics Conference Abstracts 27E CL2-5-THU.
  5. G. Chang, T. B. Norris, H. G. Winful, �??Optimization of supercontinuum generation in photonic crystal fibers for pulse compression,�?? Opt. Lett. 28, 546-548 (2003).
    [CrossRef] [PubMed]
  6. P. D. Drummond, J. F. Corney, �??Quantum noise in optical fibers. I. Stochastic equations,�?? J. Opt. Soc. Am. B, 18, 139-152 (2001).
    [CrossRef]
  7. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, �??Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,�?? Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef] [PubMed]
  8. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901 (2003).
    [CrossRef]
  9. A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  10. J. M. Dudley and S. Coen, �??Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,�?? Opt. Lett. 27, 1180-1182 (2002).
    [CrossRef]
  11. F. Lu and W. H. Knox, �??Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers,�?? Opt. Express 12, 347-353 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-347">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-347</a>.
    [CrossRef] [PubMed]

Appl. Phys. B

See, for example, the special issue of Appl. Phys. B 77, no. 2-3 (2003)

G. McConnell and E. Riis, �??Ultrashort pulse compression using photonic crystal fiber,�?? Appl. Phys. B 78, 557-564 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, �??Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,�?? Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901 (2003).
[CrossRef]

Proc. CLEO/EQEC 2003

J. M. Dudley and S. Coen, �??The compressibility of supercontinuum spectra generated in photonic crystal fiber,�?? Proceedings of the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (CLEO/Europe-EQEC 2003), Europhysics Conference Abstracts 27E CL2-5-THU.

Rev. Sci. Instrum.

A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Single simulation results showing the spectrum (left axis) and its corresponding group delay (right axis). The superimposed dashed line shows the group delay expected from only linear propagation. (b) The compressed pulse after exact compensation of the spectral phase.

Fig. 2.
Fig. 2.

For different input pulse durations as shown, the top graphs show the mean output SC spectrum (left axis) and associated degree of coherence (right axis) calculated over the simulation ensemble. The bottom graphs in each case show the mean compressed pulse obtained using an ideal compressor based on the median spectral phase.

Fig. 3.
Fig. 3.

(a) and (b) show the mean spectrum and coherence (top) and mean compressed pulse (bottom) for propagation distances as shown. (c) shows the evolution of the compressed pulse duration (bottom), the mean coherence (middle) and the fraction of the total pulse energy contained within the central lobe of the compressed pulse (top).

Fig. 4.
Fig. 4.

Calculated mean compressed pulses obtained for an initial 50 fs pulse with finite compressor resolutions as shown. The FWHM of the central lobes of the compressed pulses are (a) 3.2 fs, (b) 10.5 fs and (c) 18.3 fs.

Metrics