Abstract

A chirped pulse, spectrally broadened in a photonic bandgap optical fiber by 120 fs Ti:Sapphire laser pulses, is parametrically amplified in a BBO crystal pumped by a frequency doubled nanosecond Nd:YAG laser pulse. Without changing the frequency of the Ti:Sapphire, a spectral tunability of the amplified pulses is demonstrated. The possibility to achieve broader spectral range amplification is confirmed for a non-collinear pump-signal interaction geometry. For optimal non-collinear interaction geometry, the pulse duration of the original and amplified pulse are similar. Finally, we demonstrate that the combination of two BBO crystals makes it possible to spectrally shape the amplified pulses.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. Rouyer, E. Mazataud, I. Allais, A. Pierre, S. Seznec, C. Sauteret, G. Mourou and A. Migus, �??Generation of 50-TW femtosecond pulses in a Ti:sapphire/Nd:glass chain,�?? Opt. Lett. 18, 214-216 (1993)
    [CrossRef] [PubMed]
  2. C.P.J. Barty, G. Korn, F. Raksi, C. Rose-Petruck, J. Squier, A.C. Tien, K.R. Wilson, V.V. Yakovlev and K. Yamakawa, �??Regenerative pulse shaping and amplification of ultrabroadband optical pulses,�?? Opt. Lett. 21, 219-221 (1996)
    [CrossRef] [PubMed]
  3. A. Dubietis, G. Jonusauskas, and A. Piskarskas, �??Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,�?? Opt. Commun. 88, 437-440 (1992)
    [CrossRef]
  4. I.N. Ross, P. Matousek, M. Towrie, A.J. Langley and J.L. Collier, �??The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplification,�?? Opt. Commun. 144, 125-133 (1997)
    [CrossRef]
  5. I. N. Ross, J. L. Collier, P. Matousek, C. N. Danson, D. Neely, R. M. Allot, D. A. Pepler, C. Hernandez- Gomez and K. Osvay, �??Generation of terawatt pulses by use of optical parametric chirped pulse amplification,�?? Appl. Opt. 39, 2422-2427 (2000)
    [CrossRef]
  6. S. Lako, J. Seres, P. Apai, J. Balazs, R.S. Windeler and R. Szipocs, �??pulse compression of nanojoules pulses in the visible using microstructure optical fiber and dispersion compensation,�?? Appl. Phys. B 76, 267-275 (2003)
    [CrossRef]
  7. G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Scient. Inst. 74, 1-18 (2003)
    [CrossRef]
  8. I. N. Ross, P. Matousek, G. H.C. New and K. Osvay, �??Analysis and optimization of optical parametric chirped pulse amplification,�?? J. Opt. Soc. Am. B 19, 2945-2956 (2002)
    [CrossRef]
  9. X.Yang, Z. Xu, Z. Zhang, Y. Leng, J. Peng, J. Wang, S. Jin, W. Zhang, R. Li, �??Dependence of spectrum on pump signal angle in BBO I noncollinear optical parametric chirped pulse amplification,�?? Appl. Phys. B 73, 219-222 (2001)
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

X.Yang, Z. Xu, Z. Zhang, Y. Leng, J. Peng, J. Wang, S. Jin, W. Zhang, R. Li, �??Dependence of spectrum on pump signal angle in BBO I noncollinear optical parametric chirped pulse amplification,�?? Appl. Phys. B 73, 219-222 (2001)
[CrossRef]

S. Lako, J. Seres, P. Apai, J. Balazs, R.S. Windeler and R. Szipocs, �??pulse compression of nanojoules pulses in the visible using microstructure optical fiber and dispersion compensation,�?? Appl. Phys. B 76, 267-275 (2003)
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

A. Dubietis, G. Jonusauskas, and A. Piskarskas, �??Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,�?? Opt. Commun. 88, 437-440 (1992)
[CrossRef]

I.N. Ross, P. Matousek, M. Towrie, A.J. Langley and J.L. Collier, �??The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplification,�?? Opt. Commun. 144, 125-133 (1997)
[CrossRef]

Opt. Lett. (2)

Rev. Scient. Inst. (1)

G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Scient. Inst. 74, 1-18 (2003)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Phase-matching k-vector triangle for non-collinear optical parametric amplification.

Fig. 2.
Fig. 2.

Theoretical spectral gain (a) and experimental spectra of amplified pulses (b) for different phase matching angles in a collinear geometry

Fig. 3.
Fig. 3.

Theoretical spectral gain (a) and experimental spectra of amplified pulses (b) for two different non collinear angles. The phase-matching angle is set to obtain a spectral gain centered at 810 nm.

Fig. 4.
Fig. 4.

Experimental set-up.

Fig. 5.
Fig. 5.

Internal phase matching angle (a) and FWHM spectral width (b) of amplified pulses versus wavelength for collinear geometry.

Fig. 6.
Fig. 6.

FWHM spectral bandwidth versus non-collinear angle (a) and non-collinear angle versus phase matching angle (b) for an amplified pulse centered at 810 nm.

Fig. 7.
Fig. 7.

Measured autocorrelations of the recompressed and amplified signal in collinear (solid line) and non collinear (dotted line) geometry.

Fig. 8.
Fig. 8.

Spectral shaping of amplified pulses in a two BBO OPCPA.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 λ i = 1 λ p 1 λ s
Δ k = k p k s k i = 0
G = I s ( L ) I s ( 0 ) = 1 + ( Γ g ) 2 sinh 2 g L
n s = n s o , n i = n i o and n p 2 n p o 2 = ( n p e 2 n p o 2 ) sin 2 θ ,
( n i 0 λ i 0 ) 2 = ( n p λ p ) 2 + ( n s λ s ) 2 2 cos α ( n s n p λ s λ p )

Metrics