Abstract

We propose a new method of realizing ring resonators based on hybrid photonic crystal and conventional waveguide structures. The proposed ring resonator configuration is advantageous compared with general ring resonator structures for its controllability of the quality (Q) factor, free spectral range (FSR), and full width at half maximum (FWHM) over a wide range. We show ring resonator structures based on a single mode waveguide with core and clad refractive indices of 1.5 and 1.465, respectively. A 35µm×50µm ring resonator has a free spectral range (FSR) of 14.1nm and a quality (Q) factor of 595 with high optical efficiency (92.7%). By decreasing the size of the ring resonator to 35µm×35µm, the FSR is increased to 19.8nm. Modifying the splitting ratio of the beam splitters permits the Q factor to be increased to 1600.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, �??Ultra-Compact Si-SiO2 Microring Resonator Optical Channel Dropping Filters,�?? IEEE Photon. Technol. Lett. 10, 549-551 (1998).
    [CrossRef]
  2. A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, �??Asymmetrically Coupled Silicon-On-Insulator Microring Resonators for Compact Add-Drop Multiplexers,�?? IEEE Photon. Technol. Lett. 15, 921-923 (2003).
    [CrossRef]
  3. P. Rabiei, W. H. Steier, C. Zhang, L. R. Dalton, �??Polymer Micro-Ring Filters and Modulators,�?? J. Lightwave Technol. 20, 1968-1975 (2002).
    [CrossRef]
  4. G. Bourdon, G. Alibert, A. Beguin, B. Bellman, and E. Guiot, �??Ultralow Loss Ring Resonators Using 3.5% Index-Contrast Ge-Doped Silica Waveguides,�?? IEEE Photon. Technol. Lett. 15, 709-711 (2003).
    [CrossRef]
  5. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, �??An Eight-Channel Add-Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid,�?? IEEE Photon. Technol. Lett. 11, 691- 693 (1999).
    [CrossRef]
  6. B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, �??Microring Resonator Arrays for VLSI Photonics,�?? IEEE Photon. Technol. Lett. 12, 323-325 (2000).
    [CrossRef]
  7. G. P. Nordin, S. Kim, J. Cai, and J. Jiang, �??Hybrid integration of conventional waveguide and photonic crystal structures,�?? Opt. Express 10, 1334-1341 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1334.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1334</a>
    [CrossRef] [PubMed]
  8. S. Kim, G. P. Nordin, J. Jiang, and J. Cai, �??Micro-genetic algorithm design of hybrid conventional waveguide and photonic crystal structures,�?? Optical Engineering (to be published).
  9. S. Kim, G. P. Nordin, J. Cai, and J. Jiang, �??Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,�?? Opt. Lett. 28, 2384-2386 (2003).
    [CrossRef] [PubMed]
  10. S. Kim, G. P. Nordin, J. Jiang, and J. Cai, �??High Efficiency 90 Degree Silica Waveguide Bend Using an Air Hole Photonic Crystal Region,�?? IEEE Photon. Technol. Lett. (to be published).
  11. J. Cai, G. P. Nordin, S. Kim, and J. Jiang, �??3-D Analysis of hybrid conventional waveguide/photonic crystal 90 degree bend�?? Appl. Opt. (to be published).
  12. M. Tokushima and H. Yamada, �??Light propagation in a photonic-crystal-slab line-defect waveguide,�?? IEEE J. Quantum Electron. 38, 753-759 (2002).
    [CrossRef]
  13. S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdre, and U. Oesterle., �??Improved 60° bend transmission of submicron-width waveguides defined in two-dimensional photonic crystals,�?? J. Lightwave Technol. 20, 1198-1203 (2002).
    [CrossRef]
  14. D. M. Pustai, S. Shi, C. Chen, A. Sharkawy, and D. W. Prather, "Analysis of splitters for self-collimated beams in planar photonic crystals," Opt. Express 12, 1823-1831 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1823">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1823</a>
    [CrossRef] [PubMed]
  15. A. Taflove, �??Computational Electrodynamics: The Finite-Difference Time-Domain Method�?? (Artech House, Boston, 1995).
  16. J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185-200 (1994).
    [CrossRef]
  17. B. E. A. Saleh and M. C. Teich, �??Fundamentals of Photonics�?? (A Wiley-Interscience publication, New York, 1991), Chap. 9.

Appl. Opt.

J. Cai, G. P. Nordin, S. Kim, and J. Jiang, �??3-D Analysis of hybrid conventional waveguide/photonic crystal 90 degree bend�?? Appl. Opt. (to be published).

IEEE J. Quantum Electron.

M. Tokushima and H. Yamada, �??Light propagation in a photonic-crystal-slab line-defect waveguide,�?? IEEE J. Quantum Electron. 38, 753-759 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Bourdon, G. Alibert, A. Beguin, B. Bellman, and E. Guiot, �??Ultralow Loss Ring Resonators Using 3.5% Index-Contrast Ge-Doped Silica Waveguides,�?? IEEE Photon. Technol. Lett. 15, 709-711 (2003).
[CrossRef]

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, �??An Eight-Channel Add-Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid,�?? IEEE Photon. Technol. Lett. 11, 691- 693 (1999).
[CrossRef]

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, �??Microring Resonator Arrays for VLSI Photonics,�?? IEEE Photon. Technol. Lett. 12, 323-325 (2000).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, �??Ultra-Compact Si-SiO2 Microring Resonator Optical Channel Dropping Filters,�?? IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, �??Asymmetrically Coupled Silicon-On-Insulator Microring Resonators for Compact Add-Drop Multiplexers,�?? IEEE Photon. Technol. Lett. 15, 921-923 (2003).
[CrossRef]

S. Kim, G. P. Nordin, J. Jiang, and J. Cai, �??High Efficiency 90 Degree Silica Waveguide Bend Using an Air Hole Photonic Crystal Region,�?? IEEE Photon. Technol. Lett. (to be published).

J. Comput. Phys.

J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Optical Engineering

S. Kim, G. P. Nordin, J. Jiang, and J. Cai, �??Micro-genetic algorithm design of hybrid conventional waveguide and photonic crystal structures,�?? Optical Engineering (to be published).

Other

A. Taflove, �??Computational Electrodynamics: The Finite-Difference Time-Domain Method�?? (Artech House, Boston, 1995).

B. E. A. Saleh and M. C. Teich, �??Fundamentals of Photonics�?? (A Wiley-Interscience publication, New York, 1991), Chap. 9.

Supplementary Material (1)

» Media 1: MOV (1595 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Hybrid PhC and CWG structures for (a) a high efficiency 90 degree bend and (b) a high efficiency beam splitter. Square inset in Fig. 1(a) indicates the first Brilluin zone of the PhC.

Fig. 2.
Fig. 2.

Efficiency as a function of wavelength for TM polarization. Solid line (black) indicates the bend efficiency of the hybrid structure while other two lines (blue) correspond to the efficiencies at output channels of the splitter.

Fig. 3.
Fig. 3.

A ring resonator structure constructed with hybrid PhC and CWG structures. To maximize the efficiency, the throughput port is shifted 120nm to the left of the nominal waveguide center line and the waveguide between the two splitters is similarly shifted up 120nm.

Fig. 4.
Fig. 4.

Spectral responses of the base ring resonator at the drop (solid line) and throughput (dashed line) ports. The computation is done by 8 PCs in a linux beowolf cluster.

Fig. 5.
Fig. 5.

(1.55 MB) Movie of the electric field at the drop wavelength. The computation is done by 4 PCs with the parallelized 2-D FDTD. Yee cell size is 15nm and computation is done for 500,000 time steps.

Fig. 6.
Fig. 6.

Modified ring resonator geometry in order to increase the FSR.

Fig. 7.
Fig. 7.

Spectral responses for the ring resonator which occupies 35µm×35µm (solid black curve) compared with the base ring resonator structure (dotted red curve).

Fig. 8.
Fig. 8.

(a) Double Si post splitter structure with 100nm Si post radius and (b) spectral responses of single and double Si posts array splitters as a function of wavelength. The dotted red line corresponds to the single Si posts array splitter and the dashed (green) and solid (black) lines are for the double Si posts array splitters with 95nm and 100 nm Si post radii, respectively.

Fig. 9.
Fig. 9.

The efficiencies at the drop port of the ring resonators using single Si posts array splitter (dotted red line), double Si posts array splitter with 95nm radius (dashed green line) and 100 nm radius (solid black line).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η drop = T s 2 ( 1 R s R b ) 2 1 + [ 4 R s R b ( 1 R s R b ) 2 ] sin 2 ϕ 2 ,
ϕ = θ + 2 π nd λ 0 ,

Metrics