Abstract

This work reports on a beam quality and dynamic behaviors of a mirror-coated highly-doped YAG (Y3Al5O12) microchip ceramic laser possessing an increased number of grain boundaries. The degradation of beam quality factor in transverse patterns due to spatial inhomogeneity across the beam, multiple split-mode operations, violation of antiphase dynamics and high-speed intensity modulations due to the interference between non-orthogonal transverse modes were observed in a laser-diode end-pumping scheme.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, �??Laser-diode-pumped microchip LiNdP4O12 lasers under different pump-beam focusing condition,�?? Jpn. J. Appl. Phys. 38, L515-L517 (1999).
    [CrossRef]
  2. H. G. Danielmeyer and H. P. Weber, �??Fluorescence in neodymium ultraphosphate,�?? IEEE J. Quantum Electron. QE-8, 805-808 (1972).
    [CrossRef]
  3. K. Otsuka, T. Yamada, M. Saruwatari, and T. Kimura, �??Spectroscopy and laser oscillation properties of lithium neodymium tetraphosphate,�?? IEEE J. Quantum Electron. QE-11, 330-335 (1975).
    [CrossRef]
  4. S. R. Chinn and H. Y.-P. Hong, �??CW laser action in acentric NdAl3(BO3)4 and KNdP4O12,�?? Opt. Commun. 15, 345-350 (1975).
    [CrossRef]
  5. A. Ikesue, I. Furusato, and K. Kamata, �??Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,�?? J. Am. Ceram. Soc. 78, 225-228 (1995).
    [CrossRef]
  6. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, �??Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,�?? J. Am. Ceram. Soc. 78, 1033-1040 (1995).
    [CrossRef]
  7. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, Appl. Phys. Lett. 77, 939-941 (2000).
    [CrossRef]
  8. I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K.Yoshida, �??Thermal-birefringence-induced depolarization in Nd:YAG ceramics,�?? Opt. Lett. 27, 234-236 (2002).
    [CrossRef]
  9. T. Taira, A. Ikesue, and K. Yoshida, �??Diode-pumped Nd:YAG ceramic lasers,�?? OSA TOPS 19, 430-432 (1998).
  10. R. Kawai, Y. Asakawa, and K. Otsuka, �??Simultaneous single-frequency oscillations on different transitions and antiphase relaxation oscillation dynamics in laser-diode-pumped LiNdP4O12 lasers,�?? IEEE J. Quantum Electron. 35, 1542-1547 (1999).
    [CrossRef]
  11. C. Vanneste and P. Sebbah, �??Selective excitaion of localized modes in active random media,�?? Phys. Rev. Lett. 87, 183903 (2001).
    [CrossRef]
  12. K. Otsuka, Nonlinear Dynamics in Optical Complex Systems (Kluwer, Dordrecht, The Netherlands, 1999).
  13. K. Otsuka, J.-Y. Ko, T.-S. Lim, and H. Makino, �??Modal interference and dynamical instability in a solid-state slice laser with asymmetric end-pumping,�?? Phys. Rev. Lett. 87, 083903 (2002).
    [CrossRef]
  14. K. Otsuka, J.-Y. Ko, H. Makino, T. Ohtomo, and A. Okamoto, �??Transverse effects in a microchip laser with asymmetric end-pumping: modal interference and dynamic instability,�?? Quantum and Semiclass. Opt. 5, R137-R415 (2003).
    [CrossRef]
  15. A. Ikesue, private communication.

Appl. Phys. Lett. (1)

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, Appl. Phys. Lett. 77, 939-941 (2000).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. Kawai, Y. Asakawa, and K. Otsuka, �??Simultaneous single-frequency oscillations on different transitions and antiphase relaxation oscillation dynamics in laser-diode-pumped LiNdP4O12 lasers,�?? IEEE J. Quantum Electron. 35, 1542-1547 (1999).
[CrossRef]

H. G. Danielmeyer and H. P. Weber, �??Fluorescence in neodymium ultraphosphate,�?? IEEE J. Quantum Electron. QE-8, 805-808 (1972).
[CrossRef]

K. Otsuka, T. Yamada, M. Saruwatari, and T. Kimura, �??Spectroscopy and laser oscillation properties of lithium neodymium tetraphosphate,�?? IEEE J. Quantum Electron. QE-11, 330-335 (1975).
[CrossRef]

J. Am. Ceram. Soc. (2)

A. Ikesue, I. Furusato, and K. Kamata, �??Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,�?? J. Am. Ceram. Soc. 78, 225-228 (1995).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, �??Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,�?? J. Am. Ceram. Soc. 78, 1033-1040 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, �??Laser-diode-pumped microchip LiNdP4O12 lasers under different pump-beam focusing condition,�?? Jpn. J. Appl. Phys. 38, L515-L517 (1999).
[CrossRef]

Opt. Commun. (1)

S. R. Chinn and H. Y.-P. Hong, �??CW laser action in acentric NdAl3(BO3)4 and KNdP4O12,�?? Opt. Commun. 15, 345-350 (1975).
[CrossRef]

Opt. Lett. (1)

OSA TOPS (1)

T. Taira, A. Ikesue, and K. Yoshida, �??Diode-pumped Nd:YAG ceramic lasers,�?? OSA TOPS 19, 430-432 (1998).

Phys. Rev. Lett. (2)

C. Vanneste and P. Sebbah, �??Selective excitaion of localized modes in active random media,�?? Phys. Rev. Lett. 87, 183903 (2001).
[CrossRef]

K. Otsuka, J.-Y. Ko, T.-S. Lim, and H. Makino, �??Modal interference and dynamical instability in a solid-state slice laser with asymmetric end-pumping,�?? Phys. Rev. Lett. 87, 083903 (2002).
[CrossRef]

Quantum and Semiclass. Opt. (1)

K. Otsuka, J.-Y. Ko, H. Makino, T. Ohtomo, and A. Okamoto, �??Transverse effects in a microchip laser with asymmetric end-pumping: modal interference and dynamic instability,�?? Quantum and Semiclass. Opt. 5, R137-R415 (2003).
[CrossRef]

Other (2)

A. Ikesue, private communication.

K. Otsuka, Nonlinear Dynamics in Optical Complex Systems (Kluwer, Dordrecht, The Netherlands, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Intensity (left) and phase distributions (right) across the transverse electric field of a Ti:Sapphire laser pumped Nd:YAG ceramic laser.

Fig. 2.
Fig. 2.

The measured M2 values of the Nd:YAG ceramic laser along x-and y-axis.

Fig. 3.
Fig. 3.

The measured M2 values of the LNP laser along x-and y-axis.

Fig. 4.
Fig. 4.

(a) Surface view of the Nd:YAG ceramic used in the experiment indicating a random terrace-like structure due to single crystal grains of different sizes and crystal axes. (b) Surface roughness measured along the arrowed line in (a).

Fig. 5.
Fig. 5.

The experimental setup of an LD-pumped Nd:YAG ceramic or LNP laser.

Fig. 6.
Fig. 6.

Far-field patterns and three-dimensional intensity distributions of an LD-pumped Nd:YAG. ceramic laser. Absorbed pump power: (a) 267 mW, (b) 593 mW.

Fig. 7.
Fig. 7.

Optical spectra of the LD pumped Nd:YAG ceramic laser. (a) Global optical spectrum measured with a multi-wavelength meter with 20GHz resolution. (b) Detailed spectrum measured with a scanning Fabry-Perot interferometer. with 6-MHz resolution. Absorbed pump power: 500mW.

Fig. 8.
Fig. 8.

Example rf power spectrum of the overall intensity of the LD-pumped Nd:YAG ceramic laser. Absorbed pump power: 636mW.

Fig. 9.
Fig. 9.

High-speed modulation observed in the LD pumped Nd:YAG ceramic laser. (a) Optical spectrum measured by a scanning Fabry-Perot interferometer. (b) Intensity wave form. (c) Rf power spectrum. Absorbed pump power: 361mW.

Fig. 10.
Fig. 10.

Breathing-mode modulation in the LD pumped Nd:YAG ceramic laser (a) Intensity wave form. (b) Magnified view of (a). (c) Rf power spectrum. Absorbed pump power 409mW.

Fig. 11.
Fig. 11.

Surface view of Nd:YAG ceramics with various doping levels after thermal etching.

Fig. 12.
Fig. 12.

Beam radii near the focus point (z = 0) for a LD-pumped Nd:YAG ceramic laser with 3.4 at. % Nd doping. The output beam was focused by a lens of 60-mm focal length.

Metrics