Abstract

We demonstrate how a combination of polarisation-division multiplexing (PDM) and wavelength-division multiplexing (WDM) applied to graded index 50μm multimode fibres (MMF) at 1.55μm can be used to greatly increase the available optical bandwidth. A proof of principle experiment demonstrated error-free data transmission over 3km of MMF, using two 100GHz-spaced wavelengths, each carrying two 2.5Gb/s orthogonal PDM multiplexed channels, resulting in a 10Gb/s data rate. Polarisation and wavelength demultiplexing were simultaneously achieved by use of a grating based monochromator. We also practically implemented this transmission scheme in an all-fibre experiment, replacing the monochromator by a more convenient polarisation-insensitive, 200GHz ITU grid spacing 62.5μm MMF pigtailed WDM demultiplexer. Using two polarisations each on four wavelengths (2P × 4λ), we repeatedly achieved error-free data transmission for both circularly and linearly polarisation-wavelength-division-multiplexed channels over a MMF span of 300m, featuring a 20Gb/s data rate. Overall, we have demonstrated a major increase in the MMF bandwidth-distance product up to 30GHz-km.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. �??The 10 Gigabit Ethernet standard, IEEE standard 802.3ae-2002.�??
  2. T. Kanada, �??Evolution of modal noise in multimode fibre-optic systems�?? J. Lightwave Technol. 2, 11�??18 (1984).
    [CrossRef]
  3. T.Giles, J.Fox, and A. MacGregor, �??Bandwidth reduction in Gigabit ethernet transmission over multimode fiber and recovery through laser mode coupling,�?? Opt. Eng. 37, 3156�??3160 (1998).
    [CrossRef]
  4. T. E. Darcie, �??Subcarrier multiplexing for multiple-access lightwave networks,�?? J. Lightwave Technol. 5, 1103�?? 1110 (1987).
    [CrossRef]
  5. P. Kourtessis, T. Quinlan, E. Rochat, S. D.Walker, M. Webster, I. White, R. Penty, and M.C.Parker, �??0.6Tb/s-km Multimode Fibre Feasibility-Experiment using 40-Channel DWDM over Quadrature-Subcarrier Transmission,�?? Electron. Lett. 38, 813�??815 (2002).
    [CrossRef]
  6. E. Rochat, P. Kourtessis, M. Webster, T. Quinlan, S. Dudley, S. D. Walker, R. Penty, M. C. Parker, and I. H. White, �??Ultra-high capacity transmission over 3km of legacy 50 μm multimode-fibre using C-band HDWDM and quadrature-subcarrier multiplexing,�?? in Proc. ECOC 2002, p. 8.2.2 (2002).
  7. E. Rochat, S. Walker, and M. Parker, �??Ultra-wideband capacity enhancement of 50 μm multimode fibre links up to 3km using orthogonal polarisation transmission in C-ban,�?? in Proc. ECOC 2002, p. 5.1.7 (2002).
  8. E. Rochat, S. Walker, and M. Parker, �??C-band polarisation orthogonality preservation in 5Gb/s, 50 μm multimode fibre links up to 3km,�?? Opt. Express 11, 508�??514 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-507".>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-507</a>
    [CrossRef]
  9. M. Born and E. Wolf, Principles of optics, seventh edition ed. (Cambridge University Press, 1999).
  10. P. Steeger, T. Asakura, and A. Fercher, �??Polarization preservation in circular multimode optical fibers and its measurement by a speckle method,�?? J. Lightwave Technol. 2, 435�??441 (1984).
    [CrossRef]
  11. R. Wagner, R. Stolen, and W. Pleibel, �??Polarization preservation in multimode fibers,�?? Elect.Lett. 17, 177�??178 (1981).
    [CrossRef]
  12. I. Tsalamanis, E. Rochat, M. C. Parker, and S. D. Walker, �??Polarization orthogonality preservation in DWDM cascaded arrayed-waveguide grating networks,�?? in Proc. OFC 2004, p. MF89 (2004).
  13. P. Kourtessis, �??An Investigation of Ultra-High Capacity MMF Links,�?? Ph.D. thesis, University of Essex (2003).
  14. M. C.Raddatz, L. and White, I. H. and Cunningham, and D. G. and Nowell, �??An Experimental and Theoretical Study of the Offset Launch Technique for the Enhancement of the Bandwidth of Multimode Fiber Links,�?? J. Lightwave Technol. 16(3), 324�??331 (1998).
    [CrossRef]
  15. Z. Hass and M. A. Santaro, �??A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,�?? J. Lightwave Technol. 11, 1125�??1131 (1993).
    [CrossRef]
  16. M. Webster, L. Raddatz, I. H. White, and D. G. Cunningham, �??A statistical analysis of conditioned launch for gigabit Ethernet using multimode fiber,�?? J. Lightwave Technol. 17 17, 1532�??1541 (1999).
    [CrossRef]

Elect.Lett. (1)

R. Wagner, R. Stolen, and W. Pleibel, �??Polarization preservation in multimode fibers,�?? Elect.Lett. 17, 177�??178 (1981).
[CrossRef]

Electron. Lett. (1)

P. Kourtessis, T. Quinlan, E. Rochat, S. D.Walker, M. Webster, I. White, R. Penty, and M.C.Parker, �??0.6Tb/s-km Multimode Fibre Feasibility-Experiment using 40-Channel DWDM over Quadrature-Subcarrier Transmission,�?? Electron. Lett. 38, 813�??815 (2002).
[CrossRef]

J. Lightwave Technol. (6)

T. Kanada, �??Evolution of modal noise in multimode fibre-optic systems�?? J. Lightwave Technol. 2, 11�??18 (1984).
[CrossRef]

T. E. Darcie, �??Subcarrier multiplexing for multiple-access lightwave networks,�?? J. Lightwave Technol. 5, 1103�?? 1110 (1987).
[CrossRef]

Z. Hass and M. A. Santaro, �??A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,�?? J. Lightwave Technol. 11, 1125�??1131 (1993).
[CrossRef]

M. Webster, L. Raddatz, I. H. White, and D. G. Cunningham, �??A statistical analysis of conditioned launch for gigabit Ethernet using multimode fiber,�?? J. Lightwave Technol. 17 17, 1532�??1541 (1999).
[CrossRef]

M. C.Raddatz, L. and White, I. H. and Cunningham, and D. G. and Nowell, �??An Experimental and Theoretical Study of the Offset Launch Technique for the Enhancement of the Bandwidth of Multimode Fiber Links,�?? J. Lightwave Technol. 16(3), 324�??331 (1998).
[CrossRef]

P. Steeger, T. Asakura, and A. Fercher, �??Polarization preservation in circular multimode optical fibers and its measurement by a speckle method,�?? J. Lightwave Technol. 2, 435�??441 (1984).
[CrossRef]

Opt. Eng. (1)

T.Giles, J.Fox, and A. MacGregor, �??Bandwidth reduction in Gigabit ethernet transmission over multimode fiber and recovery through laser mode coupling,�?? Opt. Eng. 37, 3156�??3160 (1998).
[CrossRef]

Opt. Express (1)

E. Rochat, S. Walker, and M. Parker, �??C-band polarisation orthogonality preservation in 5Gb/s, 50 μm multimode fibre links up to 3km,�?? Opt. Express 11, 508�??514 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-507".>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-507</a>
[CrossRef]

Proc. ECOC 2002 (2)

E. Rochat, P. Kourtessis, M. Webster, T. Quinlan, S. Dudley, S. D. Walker, R. Penty, M. C. Parker, and I. H. White, �??Ultra-high capacity transmission over 3km of legacy 50 μm multimode-fibre using C-band HDWDM and quadrature-subcarrier multiplexing,�?? in Proc. ECOC 2002, p. 8.2.2 (2002).

E. Rochat, S. Walker, and M. Parker, �??Ultra-wideband capacity enhancement of 50 μm multimode fibre links up to 3km using orthogonal polarisation transmission in C-ban,�?? in Proc. ECOC 2002, p. 5.1.7 (2002).

Proc. OFC 2004 (1)

I. Tsalamanis, E. Rochat, M. C. Parker, and S. D. Walker, �??Polarization orthogonality preservation in DWDM cascaded arrayed-waveguide grating networks,�?? in Proc. OFC 2004, p. MF89 (2004).

Other (3)

P. Kourtessis, �??An Investigation of Ultra-High Capacity MMF Links,�?? Ph.D. thesis, University of Essex (2003).

M. Born and E. Wolf, Principles of optics, seventh edition ed. (Cambridge University Press, 1999).

�??The 10 Gigabit Ethernet standard, IEEE standard 802.3ae-2002.�??

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Arbitrary pair of SOP’s on the Poincar sphere, before (Sa , Sb ) and after (S′a , S′b ) realignment to the plane of linear polarisations.

Fig. 2.
Fig. 2.

(a) Projection of SOP on the axis of a PBS for polarisation demultiplexing and (b) principle of PBS demultiplexing.

Fig. 3.
Fig. 3.

Set-up for the measurement of Stokes parameters and orthogonality over C-band.

Fig. 4.
Fig. 4.

Channel isolation over C-band at the output of 300m (a) and 3km (b) of MMF using an optimised PBS at each wavelength so that channel isolations are equalised to each other [equivalent to using Eqs. (2) and (13)].

Fig. 5.
Fig. 5.

Channel isolation, function of wavelength for linear 300m (a) and circular 3km (b) input polarisation using a single PBS only optimised for the wavelength λ 0 = 1545nm polarisation channels [equivalent to using Eqs. (9) and (10)].

Fig. 6.
Fig. 6.

Schematic diagram of experimental set-up for combined WDM and polarisation-multiplexed MMF transmission.

Fig. 7.
Fig. 7.

Eye diagrams for the 2.5Gb/s circularly left polarised (a) and 2.5Gb/s (b) circularly right polarised channels at λ = 1547.8nm after wavelength and polarisation demultiplexing at the end of a 300m sample of MMF.

Fig. 8.
Fig. 8.

Eye diagrams for the 2.5Gb/s (a) and 2.6Gb/s (b) channel circularly left polarised at λ = 1547.8nm after wavelength and polarisation demultiplexing at the end of a 3km sample of MMF.

Fig. 9.
Fig. 9.

Typical eye diagrams for the back-to-back experiment, including WDM and polarisation demultiplexing units- (right circ. pol., λ=1546.2nm, -5.1dBm on photodiode).

Fig. 10.
Fig. 10.

Typical eye diagrams at the output of 300m MMF (right circ. pol. λ=1546.2nm, -5.7dBm on photodiode).

Fig. 11.
Fig. 11.

Typical eye diagrams at the output of 300m MMF (lin. vert. pol. λ=1546.2nm, -8.7dBm on photodiode).

Fig. 12.
Fig. 12.

BER curves measured at for a circular left polarised channel, with and without associated orthogonally-polarised multiplexed channel [8].

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

S a = S a 1 S a 2 S a 3 , S b = S b 1 S b 2 S b 3 ,
2 θ = arccos ( S a · S b ) .
s a 0 x = s a 0 cos ( χ a + ψ a )
s a 0 y = s a 0 sin ( χ a + ψ a )
s a 0 x = s a 0 cos 2 ( χ a + ψ a )
s a 0 y = s a 0 sin 2 ( χ a + ψ a )
s b 0 x = s b 0 cos 2 ( χ b + ψ b )
s b 0 y = s b 0 sin 2 ( χ b + ψ b ) .
Xt x = 10 log ( s b 0 cos 2 ( χ b + ψ b ) s a 0 cos 2 ( χ a + ψ a ) )
Xt y = 10 log ( s a 0 sin 2 ( χ a + ψ a ) s b 0 sin 2 ( χ b + ψ b ) )
Xt x = 10 log ( s b 0 cos 2 ( φ + θ 2 ) s a 0 cos 2 ( φ θ 2 ) )
Xt y = 10 log ( s a 0 sin 2 ( φ θ 2 ) s b 0 sin 2 ( φ + θ 2 ) )
Xt x = Xt y = 20 log ( tan ( 45 ° θ 2 ) ) ,

Metrics