Abstract

The performance of CW Nd:YAG waveguide lasers operating at 1.06 μm at room temperature is described. The waveguides were fabricated by proton implantation and the main differences in the process of fabrication were the angle of implantation and the total dose implanted. The characterization of the waveguide refractive index profile induced by proton implantation and the main laser characteristics i.e. slope efficiency and threshold are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. D. Townsend, P.J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).
    [CrossRef]
  2. P. D. Townsend, �??An overview of ion-implanted optical waveguides profiles,�?? Nucl. Instr. Meth. B 46, 18-25 (1990).
    [CrossRef]
  3. E. A. Arutunyan and S.Kh. Galoyan, �??Determination of refractive index profile in optical waveguides formed by ion implantation,�?? Opt. Comm. 56, 399-402 (1986).
    [CrossRef]
  4. P. J. Chandler, S. J. Field, D. C. Hanna, D. P. Shepherd, P. D. Townsend, A. C. Tropper and L. Zhang, �??Ion-implanted Nd:YAG planar waveguide laser,�?? Electron. Lett. 25, 985-986 (1989).
    [CrossRef]
  5. S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend and L. Zhang, �??Ion-implanted Nd:YAG waveguide lasers,�?? IEEE J. Quantum Electron. 27, 428-433 (1991).
    [CrossRef]
  6. G. V. Vázquez, J. Rickards, H. Márquez, G. Lifante, E. Cantelar and M. Domenech, �??Optical waveguides in Nd:YAG by proton implantation,�?? Opt. Comm. 218, 141-146 (2003).
    [CrossRef]
  7. G. V. Vázquez, J. Rickards, G. Lifante, M. Domenech, and E. Cantelar, �??Low dose carbon implanted waveguides in Nd:YAG,�?? Opt. Express 11, 1291-1296 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-11-1291.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-11-1291.</a>
    [CrossRef] [PubMed]
  8. M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, �??CW laser action at λ = 1064.3 nm in proton and carbon implanted Nd:YAG waveguides,�?? Appl. Phys. Lett. 83, 4110-4112 (2003).
    [CrossRef]
  9. P. Moretti, M.-F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, and J. Samecki, �??Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals,�?? Opt. Mater. 24, 315-319 (2003).
    [CrossRef]
  10. J. F. Ziegler, �??The Stopping of energetic light ions in elemental matter,�?? J. Appl. Phys. 85, 1249-1272 (1999).
    [CrossRef]
  11. P. J. Chandler and F. L. Lama, �??A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,�?? Opt. Acta 33, 127-143 (1986).
    [CrossRef]
  12. E. Flores-Romero, �??Study of optical waveguides obtained by using proton implantation in Nd:YAG crystals�?? (CICESE, M. Sc. Thesis, Mexico, 2003).
  13. J. T. Verdeyen, Laser Electronics (Prentice Hall, New Jersey, 1995).

Appl. Phys. Lett. (1)

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, �??CW laser action at λ = 1064.3 nm in proton and carbon implanted Nd:YAG waveguides,�?? Appl. Phys. Lett. 83, 4110-4112 (2003).
[CrossRef]

Electron. Lett. (1)

P. J. Chandler, S. J. Field, D. C. Hanna, D. P. Shepherd, P. D. Townsend, A. C. Tropper and L. Zhang, �??Ion-implanted Nd:YAG planar waveguide laser,�?? Electron. Lett. 25, 985-986 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend and L. Zhang, �??Ion-implanted Nd:YAG waveguide lasers,�?? IEEE J. Quantum Electron. 27, 428-433 (1991).
[CrossRef]

J. Appl. Phys. (1)

J. F. Ziegler, �??The Stopping of energetic light ions in elemental matter,�?? J. Appl. Phys. 85, 1249-1272 (1999).
[CrossRef]

Nucl. Instr. Meth. B (1)

P. D. Townsend, �??An overview of ion-implanted optical waveguides profiles,�?? Nucl. Instr. Meth. B 46, 18-25 (1990).
[CrossRef]

Opt. Acta (1)

P. J. Chandler and F. L. Lama, �??A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,�?? Opt. Acta 33, 127-143 (1986).
[CrossRef]

Opt. Comm. (2)

E. A. Arutunyan and S.Kh. Galoyan, �??Determination of refractive index profile in optical waveguides formed by ion implantation,�?? Opt. Comm. 56, 399-402 (1986).
[CrossRef]

G. V. Vázquez, J. Rickards, H. Márquez, G. Lifante, E. Cantelar and M. Domenech, �??Optical waveguides in Nd:YAG by proton implantation,�?? Opt. Comm. 218, 141-146 (2003).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

P. Moretti, M.-F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, and J. Samecki, �??Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals,�?? Opt. Mater. 24, 315-319 (2003).
[CrossRef]

Other (3)

E. Flores-Romero, �??Study of optical waveguides obtained by using proton implantation in Nd:YAG crystals�?? (CICESE, M. Sc. Thesis, Mexico, 2003).

J. T. Verdeyen, Laser Electronics (Prentice Hall, New Jersey, 1995).

P. D. Townsend, P.J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Experimental setup used to produce laser oscillation in waveguides. (b) Photograph of laser cavity during laser performance.

Fig. 2.
Fig. 2.

Depth distributions of the protons implanted in Nd:YAG substrates obtained from TRIM calculations. Sample 1: multi-implant of protons with energies between 1.0–1.15 MeV at an angle of 30° and total dose of 5×1016 ions/cm2 (continuous line). Sample 2: protons with an energy of 1 MeV at an angle of 60° and total dose of 2×1016 ions/cm2 (dotted line).

Fig. 3.
Fig. 3.

Waveguide refractive index profiles fitted to reproduce the experimental modes (symbols). Waveguide 1 corresponds to the continuous line and waveguide 2 to the dotted line.

Fig. 4.
Fig. 4.

Excitation range at 1064 nm of the Nd:YAG waveguide 1 where the bands corresponding to the energy level transitions 4I9/24F7/2 and 4I9/24F5/2 are clearly observed.

Fig. 5.
Fig. 5.

Recorded laser emission spectrum from waveguide 2. In the insets we show a photograph of the laser output at 1064 nm and a zoom the same spectrum.

Fig. 6.
Fig. 6.

Slope efficiency curves for both samples: (a) Waveguide 1, (b) Waveguide 2. The very similar behavior in power threshold and slope efficiency between the waveguides can be noted.

Metrics