Abstract

We demonstrate a flexible setup for holographic steering of laser tweezers in microscopy using a high resolution spatial light modulator (SLM). In contrast to other methods, hologram read-out is done in the off-axis Fresnel regime rather than in the typically used on-axis Fourier regime. The diffractive structure is calculated as a Fresnel hologram, such that after reflection at the SLM only the desired first diffraction order is guided to the input of an optical microscope, where it generates a tailored optical tweezers field. We demonstrate some advantageous features of this setup, i.e. undesired diffraction orders are suppressed, the optical traps can be easily steered in real-time by just “mouse-dragging” a hologram window at the SLM display, and a number of independently steerable optical traps can be generated simultaneously in a three-dimensional arrangement by displaying a corresponding number of adjacent hologram windows at the SLM screen.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. J. Lang and S. M. Block, �??Resource Letter: LBOT-1: Laser based optical tweezers,�?? Am. J. Phys. 71, 201�??215(2003).
    [CrossRef]
  2. D. G. Grier, �??A revolution in optical manipulation,�?? Nature 424, 810�??816 (2003).
    [CrossRef] [PubMed]
  3. R. L. Eriksen, V. R. Daria, and J. Gl¨uckstad, �??Fully dynamic multiple-beam optical tweezers,�?? Opt. Express 10, 597�??602 (2002), <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597. </a>
    [CrossRef] [PubMed]
  4. P. J. Rodrigo, V. R. Daria, and J. Glückstad, �??Real-time interactive optical micromanipulation of a mixture of high- and low-index particles,�?? Opt. Express 12, 1417�??1425 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1417.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1417</a>
    [CrossRef] [PubMed]
  5. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, �??Multi-functional optical tweezers using computergenerated holograms,�?? Opt. Commun. 185, 77�??82 (2000).
    [CrossRef]
  6. J. E. Curtis, B. A. Koss, and D. G. Grier, �??Dynamic holographic optical tweezers,�?? Opt. Commun. 207, 169�??175 (2002).
    [CrossRef]
  7. W. J. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, �??High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay,�?? Opt. Express 11, 2053�??2059 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2053.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2053</a>
    [CrossRef] [PubMed]
  8. P. T. Korda, M. B. Taylor, and D. G. Grier, �??Kinetically locked-in colloidal transport in an array of optical tweezers,�?? Phys. Rev. Lett. 89, 128301 (2002).
    [CrossRef] [PubMed]
  9. M. P. MacDonald, G. C. Spalding, and K. Dholakia, �??Microfluidic sorting in an optical lattice,�?? Nature 426, 421�??424 (2003).
    [CrossRef] [PubMed]
  10. E. R. Dufresne,G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, �??Computer-generated optical tweezer arrays,�?? Rev. Sci. Instrum. 72, 1810�??1816 (2001).
    [CrossRef]
  11. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, �??Optical trapping of three-dimensional structures using dynamic holograms,�?? Opt. Express 11, 3562�??3567 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562</a>
    [CrossRef] [PubMed]
  12. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper, and Z. J. Laczik, �??3D manipulation of particles into crystal structures using holographic optical tweezers,�?? Opt. Express 12, 220�??226 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-220">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-220</a>
    [CrossRef] [PubMed]
  13. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, Jr, �??The Kinoform: A NewWavefront Reconstruction Device,�?? IBM J. Res. Develop. 13, 150�??155 (1969).
    [CrossRef]
  14. J. E. Curtis and D. G. Grier, �??Structure of optical vortices,�?? Phys. Rev. Lett. 90, 133901 (2003).
    [CrossRef] [PubMed]
  15. K. Ladavac and D. G. Grier, �??Microoptomechanical pumps assembled and driven by holographic optical vortex arrays ,�?? Opt. Express 12, 1144�??1149 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1144.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1144</a>
    [CrossRef] [PubMed]
  16. N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, �??Optical tweezers with increased axial trapping efficiency ,�?? J. Mod. Opt. 45, 1943�??1949 (1998).
    [CrossRef]
  17. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte , �??Size-selective trapping with optical cogwheel tweezers,�?? submitted (2004).

Am. J. Phys.

M. J. Lang and S. M. Block, �??Resource Letter: LBOT-1: Laser based optical tweezers,�?? Am. J. Phys. 71, 201�??215(2003).
[CrossRef]

IBM J. Res. Develop.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, Jr, �??The Kinoform: A NewWavefront Reconstruction Device,�?? IBM J. Res. Develop. 13, 150�??155 (1969).
[CrossRef]

J. Mod. Opt.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, �??Optical tweezers with increased axial trapping efficiency ,�?? J. Mod. Opt. 45, 1943�??1949 (1998).
[CrossRef]

Nature

D. G. Grier, �??A revolution in optical manipulation,�?? Nature 424, 810�??816 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, �??Microfluidic sorting in an optical lattice,�?? Nature 426, 421�??424 (2003).
[CrossRef] [PubMed]

Opt. Commun.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, �??Multi-functional optical tweezers using computergenerated holograms,�?? Opt. Commun. 185, 77�??82 (2000).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, �??Dynamic holographic optical tweezers,�?? Opt. Commun. 207, 169�??175 (2002).
[CrossRef]

Opt. Express

R. L. Eriksen, V. R. Daria, and J. Gl¨uckstad, �??Fully dynamic multiple-beam optical tweezers,�?? Opt. Express 10, 597�??602 (2002), <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597. </a>
[CrossRef] [PubMed]

W. J. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, �??High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay,�?? Opt. Express 11, 2053�??2059 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2053.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2053</a>
[CrossRef] [PubMed]

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, �??Optical trapping of three-dimensional structures using dynamic holograms,�?? Opt. Express 11, 3562�??3567 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562</a>
[CrossRef] [PubMed]

J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper, and Z. J. Laczik, �??3D manipulation of particles into crystal structures using holographic optical tweezers,�?? Opt. Express 12, 220�??226 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-220">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-220</a>
[CrossRef] [PubMed]

K. Ladavac and D. G. Grier, �??Microoptomechanical pumps assembled and driven by holographic optical vortex arrays ,�?? Opt. Express 12, 1144�??1149 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1144.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1144</a>
[CrossRef] [PubMed]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, �??Real-time interactive optical micromanipulation of a mixture of high- and low-index particles,�?? Opt. Express 12, 1417�??1425 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1417.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1417</a>
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. E. Curtis and D. G. Grier, �??Structure of optical vortices,�?? Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef] [PubMed]

P. T. Korda, M. B. Taylor, and D. G. Grier, �??Kinetically locked-in colloidal transport in an array of optical tweezers,�?? Phys. Rev. Lett. 89, 128301 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum

E. R. Dufresne,G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, �??Computer-generated optical tweezer arrays,�?? Rev. Sci. Instrum. 72, 1810�??1816 (2001).
[CrossRef]

Other

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte , �??Size-selective trapping with optical cogwheel tweezers,�?? submitted (2004).

Supplementary Material (1)

» Media 1: MPG (2221 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup for diffractive steering of optical tweezers. A high resolution (1920 × 1200 pixels) reflective spatial light modulator (SLM) is illuminated by an expanded collimated laser beam. At the SLM, a number of image windows displaying computer-designed off-axis holograms is presented. Only laser light diffracted from these holograms into the desired first order is guided by a lens to the rear input aperture of a microscope objective. There it is used to trap particles in different kinds of advanced optical traps.

Fig. 2.
Fig. 2.

Examples for holograms displayed at the SLM for producing a “cogwheel” beam, a “doughnut” beam, and four single optical traps in different focal planes. The holograms are directly displayed as pictures on the computer screen, and can there be moved by mouse-dragging. The positions of the corresponding optical traps in the object plane of the microscope follow these mouse movements instantaneously.

Fig. 3.
Fig. 3.

Left: CCD image of the light intensity distribution in the object plane of the microscope, generated by the six holograms displayed in Fig. 2. The lower left “cogwheel” shaped intensity distribution results from a superposition of two counter-propagating doughnut modes with a helicity of 5, the ring-shaped intensity distribution (lower, middle) corresponds to an optical doughnut beam generated by the upper middle hologram in Fig. 2, whereas the other holograms each reconstruct a single optical focus at a different position. Right: Six micro beads (diameters indicated in the figure) trapped simultaneously in the 6 light traps generated by the 6 holograms. The upper middle bead is trapped in another focal plane than the other beads to demonstrate the feasibility of 3-dimensional steering of the holographic tweezers. A mpeg-movie which demonstrates movement of two beads in different focal planes by mouse-dragging the corresponding hologram windows at the computer monitor in attached in “beads.mpg” (2.2 MBytes).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

exp ( i P Fresnel ) = exp ( i [ P Fourier + π ( x 2 + y 2 ) / f F λ + ( G x x + G y y ) ] modulo 2 π )

Metrics