Abstract

We have generated noncollinear quasi-phase-matched second harmonic wave in an RbTiOPO4 crystal that was poled using the high-voltage atomic force microscope (HV-AFM). To the best of our knowledge, this is the first systematic nonlinear frequency conversion study of samples produced by the HV-AFM method. The short poling period of 1.18 μm enabled us to observe second harmonic generation at very large angles with respect to the fundamental wave. The setup was used to optically explore the homogeneity of the poled area. The measurements are in a reasonable agreement with an analytic calculations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning-probe microscopy,” Appl. Phys. Lett. 82, 103–105, (2003).
    [CrossRef]
  2. C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4235 (2003).
    [CrossRef]
  3. S. E. Harris, “Proposed backward wave oscillations in the infrared,” Appl. Phys. Lett. 9, 114–116 (1966).
    [CrossRef]
  4. Y. J. Ding, J. U. Kang, and J. Khurgin, “Theory of backward second-harmonic and third-harmonic generation using laser pulses in quasi-phase-matched second order nonlinear medium,” IEEE J. Quantum Electron. 34, 966–974 (1998).
    [CrossRef]
  5. J. A. Giordmaine, “Mixing of light beams in crystals,” Physical Review Letters 8, 19–21 (1962).
    [CrossRef]
  6. Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt..Mat. 3, 237–242 (1994).
    [CrossRef]
  7. G. Rosenman, P. Urenski, A. Agronin, A. Arie, and Y. Rosenwaks, “Nanodomain engineering in RbTiOPO4 ferroelectric crystals,” Appl. Phys. Lett. 82, 3934–3936 (2003).
    [CrossRef]
  8. V. Berger, “Nonlinear photonic crystals,” Physical Review Letters 81, 4136–4139 (1998).
    [CrossRef]
  9. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [CrossRef]
  10. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  11. Raicol Crystals Ltd., P.O. Box 2753 Yehud, Israel.

2003 (3)

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning-probe microscopy,” Appl. Phys. Lett. 82, 103–105, (2003).
[CrossRef]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4235 (2003).
[CrossRef]

G. Rosenman, P. Urenski, A. Agronin, A. Arie, and Y. Rosenwaks, “Nanodomain engineering in RbTiOPO4 ferroelectric crystals,” Appl. Phys. Lett. 82, 3934–3936 (2003).
[CrossRef]

1998 (2)

V. Berger, “Nonlinear photonic crystals,” Physical Review Letters 81, 4136–4139 (1998).
[CrossRef]

Y. J. Ding, J. U. Kang, and J. Khurgin, “Theory of backward second-harmonic and third-harmonic generation using laser pulses in quasi-phase-matched second order nonlinear medium,” IEEE J. Quantum Electron. 34, 966–974 (1998).
[CrossRef]

1994 (1)

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt..Mat. 3, 237–242 (1994).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

1966 (1)

S. E. Harris, “Proposed backward wave oscillations in the infrared,” Appl. Phys. Lett. 9, 114–116 (1966).
[CrossRef]

1962 (1)

J. A. Giordmaine, “Mixing of light beams in crystals,” Physical Review Letters 8, 19–21 (1962).
[CrossRef]

Agronin, A.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning-probe microscopy,” Appl. Phys. Lett. 82, 103–105, (2003).
[CrossRef]

G. Rosenman, P. Urenski, A. Agronin, A. Arie, and Y. Rosenwaks, “Nanodomain engineering in RbTiOPO4 ferroelectric crystals,” Appl. Phys. Lett. 82, 3934–3936 (2003).
[CrossRef]

Arie, A.

G. Rosenman, P. Urenski, A. Agronin, A. Arie, and Y. Rosenwaks, “Nanodomain engineering in RbTiOPO4 ferroelectric crystals,” Appl. Phys. Lett. 82, 3934–3936 (2003).
[CrossRef]

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Physical Review Letters 81, 4136–4139 (1998).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Canalias, C.

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4235 (2003).
[CrossRef]

Clemens, R.

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4235 (2003).
[CrossRef]

Ding, Y. J.

Y. J. Ding, J. U. Kang, and J. Khurgin, “Theory of backward second-harmonic and third-harmonic generation using laser pulses in quasi-phase-matched second order nonlinear medium,” IEEE J. Quantum Electron. 34, 966–974 (1998).
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Giordmaine, J. A.

J. A. Giordmaine, “Mixing of light beams in crystals,” Physical Review Letters 8, 19–21 (1962).
[CrossRef]

Harris, S. E.

S. E. Harris, “Proposed backward wave oscillations in the infrared,” Appl. Phys. Lett. 9, 114–116 (1966).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Kang, J. U.

Y. J. Ding, J. U. Kang, and J. Khurgin, “Theory of backward second-harmonic and third-harmonic generation using laser pulses in quasi-phase-matched second order nonlinear medium,” IEEE J. Quantum Electron. 34, 966–974 (1998).
[CrossRef]

Khurgin, J.

Y. J. Ding, J. U. Kang, and J. Khurgin, “Theory of backward second-harmonic and third-harmonic generation using laser pulses in quasi-phase-matched second order nonlinear medium,” IEEE J. Quantum Electron. 34, 966–974 (1998).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Laurell, F.

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4235 (2003).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Molotskii, M.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning-probe microscopy,” Appl. Phys. Lett. 82, 103–105, (2003).
[CrossRef]

Oseledchik, Y. S.

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt..Mat. 3, 237–242 (1994).
[CrossRef]

Pasiskevicius, V.

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4235 (2003).
[CrossRef]

Pisarevsky, A. I.

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt..Mat. 3, 237–242 (1994).
[CrossRef]

Prosvirnin, A. L.

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt..Mat. 3, 237–242 (1994).
[CrossRef]

Rosenman, G.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning-probe microscopy,” Appl. Phys. Lett. 82, 103–105, (2003).
[CrossRef]

G. Rosenman, P. Urenski, A. Agronin, A. Arie, and Y. Rosenwaks, “Nanodomain engineering in RbTiOPO4 ferroelectric crystals,” Appl. Phys. Lett. 82, 3934–3936 (2003).
[CrossRef]

Rosenwaks, Y.

G. Rosenman, P. Urenski, A. Agronin, A. Arie, and Y. Rosenwaks, “Nanodomain engineering in RbTiOPO4 ferroelectric crystals,” Appl. Phys. Lett. 82, 3934–3936 (2003).
[CrossRef]

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning-probe microscopy,” Appl. Phys. Lett. 82, 103–105, (2003).
[CrossRef]

Starshenko, V. V.

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt..Mat. 3, 237–242 (1994).
[CrossRef]

Svitanko, N. V.

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt..Mat. 3, 237–242 (1994).
[CrossRef]

Urenski, P.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning-probe microscopy,” Appl. Phys. Lett. 82, 103–105, (2003).
[CrossRef]

G. Rosenman, P. Urenski, A. Agronin, A. Arie, and Y. Rosenwaks, “Nanodomain engineering in RbTiOPO4 ferroelectric crystals,” Appl. Phys. Lett. 82, 3934–3936 (2003).
[CrossRef]

Appl. Phys. Lett. (4)

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning-probe microscopy,” Appl. Phys. Lett. 82, 103–105, (2003).
[CrossRef]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4235 (2003).
[CrossRef]

S. E. Harris, “Proposed backward wave oscillations in the infrared,” Appl. Phys. Lett. 9, 114–116 (1966).
[CrossRef]

G. Rosenman, P. Urenski, A. Agronin, A. Arie, and Y. Rosenwaks, “Nanodomain engineering in RbTiOPO4 ferroelectric crystals,” Appl. Phys. Lett. 82, 3934–3936 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

Y. J. Ding, J. U. Kang, and J. Khurgin, “Theory of backward second-harmonic and third-harmonic generation using laser pulses in quasi-phase-matched second order nonlinear medium,” IEEE J. Quantum Electron. 34, 966–974 (1998).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Opt..Mat. (1)

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt..Mat. 3, 237–242 (1994).
[CrossRef]

Physical Review Letters (2)

V. Berger, “Nonlinear photonic crystals,” Physical Review Letters 81, 4136–4139 (1998).
[CrossRef]

J. A. Giordmaine, “Mixing of light beams in crystals,” Physical Review Letters 8, 19–21 (1962).
[CrossRef]

Other (1)

Raicol Crystals Ltd., P.O. Box 2753 Yehud, Israel.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup for noncollinear second harmonic generation. Inset: K vector diagram for noncollinear second harmonic generation.

Fig. 2.
Fig. 2.

Variation of the second harmonic power in 1st order QPM as the beam travels along the x-axis (length dimension) of the crystal.

Fig. 3.
Fig. 3.

Variation of the second harmonic power in 1st order QPM as the beam travels along the z-axis (thickness dimension) of the crystal.

Fig. 4.
Fig. 4.

K Vector diagram for positive and negative angles in noncollinear SHG: Phase matching is achieved for one direction of propagation (a), but not for the opposite direction (b).

Tables (2)

Tables Icon

Table 1. Calculated and measured fundamental input angle and second harmonic output angle (both of them in air) for different QPM orders of noncollinear second harmonic generation. The angles are given in degrees.

Tables Icon

Table 2. Calculated and measured frequency doubling efficiency, effective interaction length and measured peak second harmonic power for different QPM orders of noncollinear second harmonic generation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ 2 ω n 2 ω = 2 π G ( 1 n ω n 2 ω ) 2 + 4 n ω n 2 ω sin 2 θ ,
P 2 ω = 2 ω 1 2 d eff 2 k ω π n ω 2 n 2 ω ε 0 c 3 Lh P ω 2 ,
d eff = 2 d 33 πm ,
h ( B , ξ ) ξG ( 2 B 2 ξ ) ,
G ( t ) = 2 π t 2 erf ( t 2 ) 2 t 2 ( 1 e t 2 2 ) ,
P 2 ω 1.7 Lh P ω 2 m 2 .

Metrics