Abstract

We present, for the first time, in vivo ultrahigh resolution (~2.5 μm in tissue), high speed (10000 A-scans/second equivalent acquisition rate sustained over 160 A-scans) retinal imaging obtained with Fourier domain (FD) OCT employing a commercially available, compact (500×260mm), broad bandwidth (120 nm at full-width-at-half-maximum centered at 800 nm) Titanium:sapphire laser (Femtosource Integral OCT, Femtolasers Produktions GmbH). Resolution and sampling requirements, dispersion compensation as well as dynamic range for ultrahigh resolution FD OCT are carefully analyzed. In vivo OCT sensitivity performance achieved by ultrahigh resolution FD OCT was similar to that of ultrahigh resolution time domain OCT, although employing only 2–3 times less optical power (~300 μW). Visualization of intra-retinal layers, especially the inner and outer segment of the photoreceptor layer, obtained by FDOCT was comparable to that, accomplished by ultrahigh resolution time domain OCT, despite an at least 40 times higher data acquisition speed of FD OCT.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. W. Drexler, �??Ultrahigh resolution optical coherence tomography,�?? J. Biomed. Opt. 9, 47-74 (2004).
    [CrossRef] [PubMed]
  3. W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, and A. F. Fercher, �??Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography,�?? Arch. Ophthalmol. 121, 695-706, (2003).
    [CrossRef] [PubMed]
  4. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, �??In vivo video rate optical coherence tomography,�?? Opt. Express 3 , 219 (1998) <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219</a>
    [CrossRef] [PubMed]
  5. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, �??Measurement of intraocular distances by backscattering spectral interferometry,�?? Optics Communications 117, 43-48 (1995).
    [CrossRef]
  6. M. Wojtkowski, R.Leitgeb, A. Kowalczyk, T. Bajraszewski, and A.F.Fercher, �??In-vivo human retinal imaging by Fourier domain optical coherence tomography,�?? J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  7. T. Mitsui, �??Dynamic Range of Optical Reflectometry with Spectral Interferometry,�?? Jpn. J. Appl. Phys. 38, 6133-6137 (1999).
    [CrossRef]
  8. P. Andretzky, M. Knauer, F. Kiesewetter, and G. Haeusler, �??Optical Coherence Tomography by Spectral Radar: Improvement of Signal-to-Noise Ratio,�?? Proc. SPIE 3915, 55-59 (2000).
    [CrossRef]
  9. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, �??Performance of Fourier domain vs. time domain optical coherence tomography,�?? Optics Express 11, 889-894 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>
    [CrossRef] [PubMed]
  10. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, �??Sensitivity advantage of swept source and Fourier domain optical coherence tomography,�?? Opt. Expr. 11, 2183 (2003) <a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>
    [CrossRef]
  11. J. F. De Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, �??Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,�?? Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  12. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, �??In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,�?? Opt. Lett. 29, 480-482 (2004).
    [CrossRef] [PubMed]
  13. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer,�?? High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,�?? Opt. Express 11, 3598-3604 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598</a>
    [CrossRef] [PubMed]
  14. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, �??In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,�?? 12, 367-376 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a>
    [CrossRef] [PubMed]
  15. R. Leitgeb, L. Schmetterer, F. Berisha, C. K. Hitzenberger, M. Wojtkowski, T. Bajraszewski, and A. F. Fercher, �??Real- time measurements of in-vitro flow by Fourier domain optical coherence tomography,�?? Opt. Lett. 29, 171-174 (2004) .
    [CrossRef] [PubMed]
  16. R. A. Leitgeb, L. Schmetterer, W. Drexler, T. Bajraszewski, R. J. Zawadzki, and A. F. Fercher, �??Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography, �??Optics Express 11, 3116, (2003); <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a>
    [CrossRef] [PubMed]
  17. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, �??In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,�?? Opt. Expr. 11, 3490 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a>
    [CrossRef]
  18. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, �??Full range complex spectral optical coherence tomography,�?? Opt. Lett. 27, 1415-1418 (2002).
    [CrossRef]
  19. R. A. Leitgeb, C.K. Hitzenberger, T. Bajraszewski, and A. F. Fercher, �??Phase shifting method to achieve high speed long depth range imaging using FDOCT,�?? Opt. Lett. 28, 2201-2204 (2003).
    [CrossRef] [PubMed]
  20. C.K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, �??Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,�?? J. Biomed. Opt. 4, 144-151 (1999).
    [CrossRef] [PubMed]
  21. W. Drexler, B. Hermann, A. Unterhuber, H. Sattmann, T. H. Ko, M. Wirtitsch, M. Stur, C. Scholda, E. Ergun, A. Anger, P. Ahnelt, J. G. Fujimoto, and A. F. Fercher, �??Quantification of photoreceptor layer thickness in different macular pathologies using ultra high resolution optical coherence tomography,�?? SPIE Proc. 5214, 5214-27 (2004).

Arch. Ophthalmol. (1)

W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, and A. F. Fercher, �??Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography,�?? Arch. Ophthalmol. 121, 695-706, (2003).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

W. Drexler, �??Ultrahigh resolution optical coherence tomography,�?? J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R.Leitgeb, A. Kowalczyk, T. Bajraszewski, and A.F.Fercher, �??In-vivo human retinal imaging by Fourier domain optical coherence tomography,�?? J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

C.K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, �??Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,�?? J. Biomed. Opt. 4, 144-151 (1999).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

T. Mitsui, �??Dynamic Range of Optical Reflectometry with Spectral Interferometry,�?? Jpn. J. Appl. Phys. 38, 6133-6137 (1999).
[CrossRef]

Opt. Expr. (1)

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, �??In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,�?? Opt. Expr. 11, 3490 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a>
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Optics Communications (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, �??Measurement of intraocular distances by backscattering spectral interferometry,�?? Optics Communications 117, 43-48 (1995).
[CrossRef]

Optics Express (5)

R. A. Leitgeb, L. Schmetterer, W. Drexler, T. Bajraszewski, R. J. Zawadzki, and A. F. Fercher, �??Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography, �??Optics Express 11, 3116, (2003); <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a>
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, �??Performance of Fourier domain vs. time domain optical coherence tomography,�?? Optics Express 11, 889-894 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, �??Sensitivity advantage of swept source and Fourier domain optical coherence tomography,�?? Opt. Expr. 11, 2183 (2003) <a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>
[CrossRef]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer,�?? High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,�?? Opt. Express 11, 3598-3604 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598</a>
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, �??In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,�?? 12, 367-376 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a>
[CrossRef] [PubMed]

Proc. SPIE (1)

P. Andretzky, M. Knauer, F. Kiesewetter, and G. Haeusler, �??Optical Coherence Tomography by Spectral Radar: Improvement of Signal-to-Noise Ratio,�?? Proc. SPIE 3915, 55-59 (2000).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

SPIE Proc. (1)

W. Drexler, B. Hermann, A. Unterhuber, H. Sattmann, T. H. Ko, M. Wirtitsch, M. Stur, C. Scholda, E. Ergun, A. Anger, P. Ahnelt, J. G. Fujimoto, and A. F. Fercher, �??Quantification of photoreceptor layer thickness in different macular pathologies using ultra high resolution optical coherence tomography,�?? SPIE Proc. 5214, 5214-27 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the ultrahigh resolution FD OCT system: Ti:Sapp, broad bandwidth Titanium:sapphire laser (Femtosource Integral OCT); Ch, Chopper wheel; DF, neutral density filter; DC, dispersion control; DG, diffraction grating; X-Y-Sc, transverse galvo scanners; S, sample; SYNC, microelectronics for synchronizing system components; PC, personal computer; CCD, charge coupled device.

Fig. 2.
Fig. 2.

(a) recorded spectrum (black line) with dispersion and associated signal phase (red line). (b) Time domain signal after FFT without (black line) and with resampling (red line) of the recorded spectrum. The blue line shows the coherence envelope after the coordinate change λK.

Fig. 3.
Fig. 3.

(a) dependence of Ns,max and Nref to the load factor γ. (b) Dynamic range in the shot noise limit without (ξ=0) and with (ξ=0.2) incoherent background (N sat = 300 k e-, N=1024).

Fig. 4.
Fig. 4.

Relation of shot noise to RIN. (Nsat = 400 ke-, λ cent=820nm, FWHM=100nm, N=1024).

Fig. 5.
Fig. 5.

Effect of spectral zero padding to increase sampling point density in the time domain. The values shown on the x-axes are optical path lengths.

Fig. 6.
Fig. 6.

(a) Ultrahigh resolution by Fourier Domain optical coherence tomography with 10 kHz A-scan rate, 300μW at the sample, and 3μm axial resolution in free space across the foveal region of the retina. (b) Comparison to time domain optical coherence tomography with 130 Hz A-scan rate, 800μW at the sample, and ~3μm axial resolution in the retina. (c) Enlarged section of (a). (d) Enlarged section of (b).The imaged eyes are of different healthy volunteers. The white scale bars represent 100μm. The tomograms in (a) and (b) spread over ~5mm laterally, the sections in (c) and (d) over ~1,5mm. No image processing was applied. (NFL, nerve fiber layer; GCL, ganglion cell layer; IPL/OPL, inner/outer plexiform layer; INL, inner nuclear layer; ELM, external limiting membrane; ISPR/OSPR, inner/outer segment photo receptor layer; RPE, retinal pigment epithelium.)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( λ ) = I r ( λ ) + I s ( λ ) + 2 I r ( λ ) I s ( λ ) cos ( 2 f ( λ ) Δz + g ( λ ) ) ,
DR = N sample max N ref N sample min N ref = N sat γ ( 1 + γ 2 γ ) 2 / N .

Metrics