Abstract

By using spectrally noncritical phase-matching in a partially deuterated KDP around its retracing point of phase-matching, we have experimentally and numerically investigated the characteristics of second-harmonic generation (SHG) with femtosecond laser at 1 μm for the first time. This phase-matching configuration can support efficient SHG over 20nm bandwidth of the fundamental laser at 1 μm in a 10-mm-long crystal. Efficiency of harmonic conversion as high as 55% has been demonstrated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. H. Glenn, �??Second-Harmonic Generation by Picosecond Optical Pulses,�?? IEEE J. Quantum Electron. 5, 284 (1969).
    [CrossRef]
  2. R. J. Ellingson and C. L. Tang, �??High-repetition-rate femtosecond pulse generation in the blue,�?? Opt. Lett. 17, 343 (1992).
    [CrossRef] [PubMed]
  3. O. E. Martinez, �??Achromatic phase matching for second harmonic generation of femtosecond pulses,�?? IEEE J. Quantum Electron. 25, 2464 (1989).
    [CrossRef]
  4. G. Szabo, Z. Bor, �??Broadband Frequency Doubler for Femtosecond Pulses,�?? Appl. Phys. B 50, 51 (1990).
  5. B. A. Richman, S. E. Bisson, R. Trebino, E. Sidick, and A. Jacobson, �??Efficient broadband second-harmonic generation by dispersive achromatic nonlinear conversion using only prisms,�?? Opt. Lett. 23, 497
    [CrossRef]
  6. M. Brown, �??Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs,�?? Opt. Lett. 23, 1591 (1998).
    [CrossRef]
  7. S. Ashihara, T. Shimura, and K. Kuroda, �??Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings,�?? J. Opt. Soc. Am. B 20, 853 (2003).
    [CrossRef]
  8. G. Y. Wang and E. M. Garmire, �??High-efficiency generation of ultrashort second-harmonic pulses based on the Cerenkov geometry,�?? Opt. Lett. 19, 254 (1994).
    [CrossRef] [PubMed]
  9. L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, �??Efficient frequency doubling of a femtosecond fiber laser,�?? Opt. Lett. 21, 1759 (1996).
    [CrossRef] [PubMed]
  10. X. Liu, L. J. Qian, and F. W. Wise, �??Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,�?? Opt. Commun. 144, 265 (1997).
    [CrossRef]
  11. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, �??Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,�?? Opt. Lett. 27, 1046 (2002).
    [CrossRef]
  12. M. S. Webb, D. Eimerl, and S. P. Velsko, �??Wavelength insensitive phase-matched second-harmonic generation in partially deuterated KDP,�?? J. Opt. Soc. Am. B 9, 1118 (1992).
    [CrossRef]
  13. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, New York, 1999).

Appl. Phys. B (1)

G. Szabo, Z. Bor, �??Broadband Frequency Doubler for Femtosecond Pulses,�?? Appl. Phys. B 50, 51 (1990).

IEEE J. Quantum Electron. (2)

W. H. Glenn, �??Second-Harmonic Generation by Picosecond Optical Pulses,�?? IEEE J. Quantum Electron. 5, 284 (1969).
[CrossRef]

O. E. Martinez, �??Achromatic phase matching for second harmonic generation of femtosecond pulses,�?? IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

X. Liu, L. J. Qian, and F. W. Wise, �??Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,�?? Opt. Commun. 144, 265 (1997).
[CrossRef]

Opt. Lett. (6)

Other (1)

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Evolution of the SHG spectrum with the crystal orientation approaching to the retracing point. (a) Δθ≈1 mrad (b) Δθ≈0.5 mrad (c) Δθ=0 , where Δθ is the detuning measured relative to the retracing point.

Fig. 2.
Fig. 2.

Numerical results of the output SH spectra with a 1cm-long partially deuterated KDP at (a) ΔKL=2.5π (b) ΔKL=0.5π (c) ΔKL=0. The simulations were carried out under the regime of low pump intensity. A Fourier-transform limited Gaussian pulse with bandwidth of 150 nm was adopted, and dispersion values were taken as β2(1ω)= -18 fs2/mm and β2(2ω)=66 fs2/mm.

Fig. 3.
Fig. 3.

The output SH and the input fundamental (inset) spectra.

Fig. 4.
Fig. 4.

Autocorrelation traces of the SH and the fundamental (inset) pulses.

Fig. 5.
Fig. 5.

Conversion efficiency vs. input intensity. Solid curve: theoretical prediction. Solid square: experimental results. The parameters used in the simulations are same as that in Fig. 2 except the intensities.

Metrics