Abstract

Ultrahigh resolution optical coherence tomography imaging is performed with a compact broadband superluminescent diode light source. The source consists of two multiplexed broadband superluminescent diodes and has a power output of 4 mW with a spectral bandwidth of 155 nm, centered at a wavelength of 890 nm. In vivo imaging was performed with approximately 2.3 μm axial resolution in scattering tissue and approximately 3.2 μm axial resolution in the retina. These results demonstrate that it is possible to perform in vivo ultrahigh resolution optical coherence tomography imaging using a superluminescent diode light source that is inexpensive, compact, and easy to operate.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, "High-resolution optical coherence tomographic imaging using a mode-locked Ti-Al2O3 laser source," Opt. Lett. 20, 1486- 1488 (1995).
    [CrossRef] [PubMed]
  3. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  4. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air�??silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  5. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003).
    [CrossRef] [PubMed]
  6. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh resolution ophthalmic optical coherence tomography," Nature Medicine 7, 502-507 (2001).
    [CrossRef] [PubMed]
  7. W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography," Archives of Ophthalmology 121, 695-706 (2003).
    [CrossRef] [PubMed]
  8. X. Clivaz, F. Marquis-Weible, and R. P. Salathe, "Optical low coherence reflectometry with 1.9 mu m spatial resolution," Electron. Lett. 28, 1553-1555 (1992).
    [CrossRef]
  9. A. M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathe, "Ultrahigh resolution optical coherence tomography using a superluminescent light source," Opt. Express 10, 349-353 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-349">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-349</a>.
    [CrossRef] [PubMed]
  10. M. Pollnau, R. P. Salathe, T. Bhutta, D. P. Shepherd, and R. W. Eason, "Continuous-wave broadband emitter based on a transition-metal-ion-doped waveguide," Opt. Lett. 26, 283-285 (2001).
    [CrossRef]
  11. A. Crunteanu, M. Pollnau, G. Janchen, C. Hibert, P. Hoffmann, R. P. Salathe, R. W. Eason, C. Grivas, and D. P. Shepherd, "Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide," Appl. Phys. B (Lasers and Optics) B75, 15-17 (2002).
    [CrossRef]
  12. M. Pollnau, "Broadband luminescent materials in waveguide geometry," J. Luminescence 102-103, 797-801 (2003).
    [CrossRef]
  13. G. A. Alphonse and M. Toda, "Mode coupling in angled facet semiconductor optical amplifiers and superluminescent diodes," J. Lightwave Technol. 10, 215-219 (1992).
    [CrossRef]
  14. G. A. Alphonse, "Design of high-power superluminescent diodes with low spectral modulation," presented at Test and Measurement Applications of Optoelectric Devices, Jan 21-22 2002, San Jose, CA, United States (2002).
  15. V. Shidlovski and J. Wei, "Superluminescent diodes for optical coherence tomography," presented at Test and Measurement Applications of Optoelectric Devices, Jan 21-22 2002, San Jose, CA, United States (2002).
  16. E. A. Swanson, S. R. Chinn, S. A. Boppart, B. Bouma, M. R. Hee, G. J. Teary, J. G. Fujimoto, and M. B. Brezinski, "Optical coherence tomography: principles, instrumentation, and applications," presented at Proceedings of 21st Australian Conference on Optical Fibre Technology (ACOFT'96), 1-4 Dec. 1996, Gold Coast, Qld., Australia (1996).
  17. A. Baumgartner, C. K. Hitzenberger, H. Sattman, W. Drexler, and A. F. Fercher, "Signal and resolution enhancements in dual beam optical coherence tomography of the human eye," J. Biomed. Opt. 3, 45-54 (1998).
    [CrossRef] [PubMed]
  18. A. T. Semenov, V. R. Shidlovski, D. A. Jackson, R. Willsch, and W. Ecke, "Spectral control in multisection AlGaAs SQW superluminescent diodes at 800 nm," Electron. Lett. 32, 255-256 (1996).
    [CrossRef]
  19. D. S. Mamedov, V. V. Prokhorov, and S. D. Yakubovich, "Superbroadband high-power superluminescent diode emitting at 920 nm," Quantum Electron. 33, 471-473 (2003).
    [CrossRef]
  20. G. M. Hale and M. R. Query, "Optical constants of water in the 200-nm to 200-µm wavelength region," Appl. Opt. 12, 555-563 (1973).
    [CrossRef] [PubMed]
  21. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Archives of Ophthalmology 113, 325-332 (1995).
    [CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

A. Crunteanu, M. Pollnau, G. Janchen, C. Hibert, P. Hoffmann, R. P. Salathe, R. W. Eason, C. Grivas, and D. P. Shepherd, "Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide," Appl. Phys. B (Lasers and Optics) B75, 15-17 (2002).
[CrossRef]

Archives of Ophthalmology

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography," Archives of Ophthalmology 121, 695-706 (2003).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Archives of Ophthalmology 113, 325-332 (1995).
[CrossRef] [PubMed]

Electron. Lett.

X. Clivaz, F. Marquis-Weible, and R. P. Salathe, "Optical low coherence reflectometry with 1.9 mu m spatial resolution," Electron. Lett. 28, 1553-1555 (1992).
[CrossRef]

A. T. Semenov, V. R. Shidlovski, D. A. Jackson, R. Willsch, and W. Ecke, "Spectral control in multisection AlGaAs SQW superluminescent diodes at 800 nm," Electron. Lett. 32, 255-256 (1996).
[CrossRef]

J. Biomed. Opt.

A. Baumgartner, C. K. Hitzenberger, H. Sattman, W. Drexler, and A. F. Fercher, "Signal and resolution enhancements in dual beam optical coherence tomography of the human eye," J. Biomed. Opt. 3, 45-54 (1998).
[CrossRef] [PubMed]

J. Lightwave Technol.

G. A. Alphonse and M. Toda, "Mode coupling in angled facet semiconductor optical amplifiers and superluminescent diodes," J. Lightwave Technol. 10, 215-219 (1992).
[CrossRef]

J. Luminescence

M. Pollnau, "Broadband luminescent materials in waveguide geometry," J. Luminescence 102-103, 797-801 (2003).
[CrossRef]

Nature Medicine

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh resolution ophthalmic optical coherence tomography," Nature Medicine 7, 502-507 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Quantum Electron.

D. S. Mamedov, V. V. Prokhorov, and S. D. Yakubovich, "Superbroadband high-power superluminescent diode emitting at 920 nm," Quantum Electron. 33, 471-473 (2003).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other

G. A. Alphonse, "Design of high-power superluminescent diodes with low spectral modulation," presented at Test and Measurement Applications of Optoelectric Devices, Jan 21-22 2002, San Jose, CA, United States (2002).

V. Shidlovski and J. Wei, "Superluminescent diodes for optical coherence tomography," presented at Test and Measurement Applications of Optoelectric Devices, Jan 21-22 2002, San Jose, CA, United States (2002).

E. A. Swanson, S. R. Chinn, S. A. Boppart, B. Bouma, M. R. Hee, G. J. Teary, J. G. Fujimoto, and M. B. Brezinski, "Optical coherence tomography: principles, instrumentation, and applications," presented at Proceedings of 21st Australian Conference on Optical Fibre Technology (ACOFT'96), 1-4 Dec. 1996, Gold Coast, Qld., Australia (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the OCT system using a broadband SLD light source for in vivo ultrahigh resolution OCT imaging. A single detector was used due to the low excess noise of the SLD source. Dispersion matching elements (BK7, FS) in the reference arm were used to match the dispersion of optical elements in the sample arm. Polarization controllers (PC) allowed polarization adjustments to maximize field intensity in the interferometer.

Fig. 2.
Fig. 2.

(a) Individual output spectra of the two superluminescent diodes. (b) Fiber-coupled multiplexed spectrum of the broadband SLD source. (c) Coherence point spread function of the broadband SLD source. (d) Logarithmic demodulated coherence point spread function. A 3.0 OD filter was used to prevent detector saturation.

Fig. 3.
Fig. 3.

In vivo ultrahigh resolution OCT image of the Syrian golden hamster cheek pouch taken with the broadband SLD light source. Image axial resolution was 2.3 μm in tissue and transverse resolution was 5 μm. Ultrahigh resolution OCT imaging using a broadband SLD light source is capable of visualizing the stratum cornium, epithelium, muscularis, connective tissue, and blood vessels in the hamster cheek pouch.

Fig. 4.
Fig. 4.

In vivo ultrahigh resolution OCT image of the human retina taken with the broadband SLD light source. Image axial resolution in the retina was about 3.2 μm and transverse resolution was about 15–20 μm. All the major intraretinal layers can be clearly seen in this ultrahigh resolution OCT image.

Fig. 5.
Fig. 5.

In vivo standard resolution OCT image of the human retina taken with the commercial StratusOCT clinical system. Axial resolution of the image was about 10 μm and transverse resolution was about 20 μm. Small intraretinal features such as the ganglion cell layer and the external limiting membrane are not as clearly visualized as in the ultrahigh resolution image (Fig. 4).

Fig. 6.
Fig. 6.

Foveal region enlargements (2x) of the ultrahigh resolution OCT and standard resolution OCT images of the human retina. Ultrahigh resolution OCT has the ability to improve visualization and delineation of small intraretinal features over standard resolution OCT. Retinal features such as the external limiting membrane (ELM) and ganglion cell layer (GCL) are much better visualized in the ultrahigh resolution OCT image.

Metrics