Abstract

A liquid phantom for investigating light propagation through layered diffusive media is described. The diffusive medium is an aqueous suspension of calibrated scatterers and absorbers. A thin membrane separates layers with different optical properties. Experiments showed that a material with scattering properties should be used for the membrane to avoid the perturbation due to the guided propagation that occurs through a transparent layer. Examples of measurements on a three-layered medium are reported both in the cw and in the time domain.

©2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method

Fabrizio Martelli and Giovanni Zaccanti
Opt. Express 15(2) 486-500 (2007)

Monte Carlo procedure for investigating light propagation and imaging of highly scattering media

Angelo Sassaroli, Costantino Blumetti, Fabrizio Martelli, Lucia Alianelli, Daniele Contini, Andrea Ismaelli, and Giovanni Zaccanti
Appl. Opt. 37(31) 7392-7400 (1998)

Effect of a clear layer at the surface of a diffusive medium on measurements of transmittance and reflectance

Samuele Del Bianco, Fabrizio Martelli, and Giovanni Zaccanti
Opt. Express 12(22) 5510-5517 (2004)

References

  • View by:
  • |
  • |
  • |

  1. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van de Bergh, “Noninvasive determination of the optical properties of two-layered turbid medium,” Appl. Opt. 37, 779–791 (1998).
    [Crossref]
  2. F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, and G. Zaccanti, “Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).
    [Crossref]
  3. S. R. Arridge and M. Schweiger, “Photon measurements density functions. Part II: finite element method calculations,” Appl. Opt. 348026–8037 (1995).
    [Crossref] [PubMed]
  4. M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998)
    [Crossref] [PubMed]
  5. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
    [Crossref] [PubMed]
  6. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimentional Monte Carlo code for photon migration through complex heterogeneous media including the adult head,” Opt. Express 10, 159–170 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159.
    [Crossref] [PubMed]
  7. J. C. Hebden, D. J. Hall, M. Firbank, and D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
    [Crossref] [PubMed]
  8. U. Sukowsky, R. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996)
    [Crossref]
  9. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
    [Crossref] [PubMed]
  10. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).
    [Crossref] [PubMed]
  11. Y. Tanikawa-Takahashi, D. Imai, H. Maki, S. Takahashi, and Y. Yamada, “Fabrication of a dynamic optical head phantom from an MRI head model,” in Photon propagation in Tissues III, D. A. Benaron, B. Chance, and M. Ferrari, eds., Proc. SPIE 3194, 512–521 (1998).
    [Crossref]
  12. G. Zaccanti, L. Alianelli, C. Blumetti, and S. Carraresi, “A method for measuring the mean time of flight spent by photons inside a volume element of a highly diffusing medium,” Opt. Lett. 24, 1290 (1999).
    [Crossref]
  13. A. Pifferi, A. Torricelli, P. Taroni, and R. Cubeddu, “Reconstruction of absorber concentrations in a two-layer structure by use of multidistance time-resolved reflectance spectroscopy,” Opt. Lett. 26, 1963–1965 (2001).
    [Crossref]
  14. S. Andersson-Engels, R. Berg, and S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B 16155–167 (1992).
    [Crossref] [PubMed]
  15. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
    [Crossref] [PubMed]
  16. R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
    [Crossref] [PubMed]
  17. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μ’s and μa images versus time-integrated images,” Appl. Opt. 354533–40 (1996).
    [Crossref] [PubMed]
  18. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874 (1999).
    [Crossref]
  19. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high density media,” Appl. Opt. 42, 4023–4030 (2003).
    [Crossref] [PubMed]
  20. Y. Fukui, Y. Ajichi, and E. Okada, “Monte Carlo Prediction of Near-Infrared Light Propagation in Realistic Adult and Neonatal Head Models,” Appl. Opt. 42, 2881–2887 (2003).
    [Crossref] [PubMed]
  21. E. Okada and D. T. Delpy, “Near-Infrared Light Propagation in an Adult Head Model. I. Modeling of Low-Level Scattering in the Cerebrospinal Fluid Layer,” Appl. Opt. 42, 2906–2914 (2003).
    [Crossref] [PubMed]

2004 (1)

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).
[Crossref] [PubMed]

2003 (4)

2002 (2)

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimentional Monte Carlo code for photon migration through complex heterogeneous media including the adult head,” Opt. Express 10, 159–170 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159.
[Crossref] [PubMed]

R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[Crossref] [PubMed]

2001 (1)

1999 (2)

G. Zaccanti, L. Alianelli, C. Blumetti, and S. Carraresi, “A method for measuring the mean time of flight spent by photons inside a volume element of a highly diffusing medium,” Opt. Lett. 24, 1290 (1999).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874 (1999).
[Crossref]

1998 (3)

Y. Tanikawa-Takahashi, D. Imai, H. Maki, S. Takahashi, and Y. Yamada, “Fabrication of a dynamic optical head phantom from an MRI head model,” in Photon propagation in Tissues III, D. A. Benaron, B. Chance, and M. Ferrari, eds., Proc. SPIE 3194, 512–521 (1998).
[Crossref]

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998)
[Crossref] [PubMed]

A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van de Bergh, “Noninvasive determination of the optical properties of two-layered turbid medium,” Appl. Opt. 37, 779–791 (1998).
[Crossref]

1997 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[Crossref] [PubMed]

1996 (2)

U. Sukowsky, R. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996)
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μ’s and μa images versus time-integrated images,” Appl. Opt. 354533–40 (1996).
[Crossref] [PubMed]

1995 (3)

1993 (1)

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[Crossref] [PubMed]

1992 (1)

S. Andersson-Engels, R. Berg, and S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B 16155–167 (1992).
[Crossref] [PubMed]

Ajichi, Y.

Alianelli, L.

Andersson-Engels, S.

S. Andersson-Engels, R. Berg, and S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B 16155–167 (1992).
[Crossref] [PubMed]

Arridge, S. R.

S. R. Arridge and M. Schweiger, “Photon measurements density functions. Part II: finite element method calculations,” Appl. Opt. 348026–8037 (1995).
[Crossref] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[Crossref] [PubMed]

Bays, R.

Berg, R.

S. Andersson-Engels, R. Berg, and S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B 16155–167 (1992).
[Crossref] [PubMed]

Bianco, S. Del

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, and G. Zaccanti, “Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).
[Crossref]

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high density media,” Appl. Opt. 42, 4023–4030 (2003).
[Crossref] [PubMed]

Blumetti, C.

Boas, D. A.

Carraresi, S.

Cope, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[Crossref] [PubMed]

Cubeddu, R.

A. Pifferi, A. Torricelli, P. Taroni, and R. Cubeddu, “Reconstruction of absorber concentrations in a two-layer structure by use of multidistance time-resolved reflectance spectroscopy,” Opt. Lett. 26, 1963–1965 (2001).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874 (1999).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μ’s and μa images versus time-integrated images,” Appl. Opt. 354533–40 (1996).
[Crossref] [PubMed]

Culver, J. P.

de Bergh, H. van

Delpy, D. T.

E. Okada and D. T. Delpy, “Near-Infrared Light Propagation in an Adult Head Model. I. Modeling of Low-Level Scattering in the Cerebrospinal Fluid Layer,” Appl. Opt. 42, 2906–2914 (2003).
[Crossref] [PubMed]

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998)
[Crossref] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, and D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[Crossref] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[Crossref] [PubMed]

Dognitz, N.

Dunn, A. K.

Essenpreis, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[Crossref] [PubMed]

Farrell, T. J.

R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[Crossref] [PubMed]

Firbank, M.

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998)
[Crossref] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, and D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[Crossref] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[Crossref] [PubMed]

Fukui, Y.

Gao, F.

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).
[Crossref] [PubMed]

Grosenick, D.

U. Sukowsky, R. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996)
[Crossref]

Hall, D. J.

Hayward, J. E.

R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[Crossref] [PubMed]

Hebden, J. C.

Hiraoka, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[Crossref] [PubMed]

Hunter, R. J.

R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[Crossref] [PubMed]

Imai, D.

Y. Tanikawa-Takahashi, D. Imai, H. Maki, S. Takahashi, and Y. Yamada, “Fabrication of a dynamic optical head phantom from an MRI head model,” in Photon propagation in Tissues III, D. A. Benaron, B. Chance, and M. Ferrari, eds., Proc. SPIE 3194, 512–521 (1998).
[Crossref]

Jiang, H.

Kienle, A.

Maki, H.

Y. Tanikawa-Takahashi, D. Imai, H. Maki, S. Takahashi, and Y. Yamada, “Fabrication of a dynamic optical head phantom from an MRI head model,” in Photon propagation in Tissues III, D. A. Benaron, B. Chance, and M. Ferrari, eds., Proc. SPIE 3194, 512–521 (1998).
[Crossref]

Martelli, F.

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, and G. Zaccanti, “Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).
[Crossref]

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high density media,” Appl. Opt. 42, 4023–4030 (2003).
[Crossref] [PubMed]

Okada, E.

Osterberg, U. L.

Patterson, M. S.

Paulsen, K. D.

Pifferi, A.

A. Pifferi, A. Torricelli, P. Taroni, and R. Cubeddu, “Reconstruction of absorber concentrations in a two-layer structure by use of multidistance time-resolved reflectance spectroscopy,” Opt. Lett. 26, 1963–1965 (2001).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874 (1999).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μ’s and μa images versus time-integrated images,” Appl. Opt. 354533–40 (1996).
[Crossref] [PubMed]

Pogue, B. W.

Rinneberg, H.

U. Sukowsky, R. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996)
[Crossref]

Sassaroli, A.

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, and G. Zaccanti, “Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).
[Crossref]

Schubert, R.

U. Sukowsky, R. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996)
[Crossref]

Schweiger, M.

Stott, J. J.

Sukowsky, U.

U. Sukowsky, R. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996)
[Crossref]

Svanberg, S.

S. Andersson-Engels, R. Berg, and S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B 16155–167 (1992).
[Crossref] [PubMed]

Takahashi, S.

Y. Tanikawa-Takahashi, D. Imai, H. Maki, S. Takahashi, and Y. Yamada, “Fabrication of a dynamic optical head phantom from an MRI head model,” in Photon propagation in Tissues III, D. A. Benaron, B. Chance, and M. Ferrari, eds., Proc. SPIE 3194, 512–521 (1998).
[Crossref]

Tanikawa, Y.

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).
[Crossref] [PubMed]

Tanikawa-Takahashi, Y.

Y. Tanikawa-Takahashi, D. Imai, H. Maki, S. Takahashi, and Y. Yamada, “Fabrication of a dynamic optical head phantom from an MRI head model,” in Photon propagation in Tissues III, D. A. Benaron, B. Chance, and M. Ferrari, eds., Proc. SPIE 3194, 512–521 (1998).
[Crossref]

Taroni, P.

A. Pifferi, A. Torricelli, P. Taroni, and R. Cubeddu, “Reconstruction of absorber concentrations in a two-layer structure by use of multidistance time-resolved reflectance spectroscopy,” Opt. Lett. 26, 1963–1965 (2001).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874 (1999).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μ’s and μa images versus time-integrated images,” Appl. Opt. 354533–40 (1996).
[Crossref] [PubMed]

Torricelli, A.

A. Pifferi, A. Torricelli, P. Taroni, and R. Cubeddu, “Reconstruction of absorber concentrations in a two-layer structure by use of multidistance time-resolved reflectance spectroscopy,” Opt. Lett. 26, 1963–1965 (2001).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874 (1999).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μ’s and μa images versus time-integrated images,” Appl. Opt. 354533–40 (1996).
[Crossref] [PubMed]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874 (1999).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μ’s and μa images versus time-integrated images,” Appl. Opt. 354533–40 (1996).
[Crossref] [PubMed]

Wagnieres, G.

Yamada, Y.

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).
[Crossref] [PubMed]

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, and G. Zaccanti, “Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).
[Crossref]

Y. Tanikawa-Takahashi, D. Imai, H. Maki, S. Takahashi, and Y. Yamada, “Fabrication of a dynamic optical head phantom from an MRI head model,” in Photon propagation in Tissues III, D. A. Benaron, B. Chance, and M. Ferrari, eds., Proc. SPIE 3194, 512–521 (1998).
[Crossref]

Zaccanti, G.

Zee, P. van der

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[Crossref] [PubMed]

Zhao, H.

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).
[Crossref] [PubMed]

Appl. Opt. (7)

Appl. Phys. Lett. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874 (1999).
[Crossref]

J. Photochem. Photobiol. B (1)

S. Andersson-Engels, R. Berg, and S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B 16155–167 (1992).
[Crossref] [PubMed]

Neuroimage (1)

M. Firbank, E. Okada, and D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998)
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Med. Biol. (5)

R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[Crossref] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[Crossref] [PubMed]

U. Sukowsky, R. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996)
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[Crossref] [PubMed]

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004).
[Crossref] [PubMed]

Phys. Rev. E (1)

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, and G. Zaccanti, “Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).
[Crossref]

Proc. SPIE (1)

Y. Tanikawa-Takahashi, D. Imai, H. Maki, S. Takahashi, and Y. Yamada, “Fabrication of a dynamic optical head phantom from an MRI head model,” in Photon propagation in Tissues III, D. A. Benaron, B. Chance, and M. Ferrari, eds., Proc. SPIE 3194, 512–521 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. View of the proposed phantom.
Fig. 2.
Fig. 2. MC time resolved reflectance for a homogeneous medium and for the same medium with a transparent membrane of different thickness, scl , at a depth of 5 mm. The results are shown for two values of the source-receiver separation: ρ = 20 and 50 mm. The diffusive medium has μs ' = 1 mm-1, μa =0.01 mm-1, and refractive index n 1 = 1.33. The refractive index of the membrane is n 2 = 1.5.
Fig. 3.
Fig. 3. Examples of perturbation due to three different transparent membranes on multidistance (ρ = 10, 20, 30, 40 mm) measurements of time resolved reflectance. The figure reports the results for the homogeneous medium (μs ' =1.00±0.03 mm-1 and μa = 0.01±0.0005 mm-1) with (red curves) and without (black curves) the membrane. For all measurements the membrane was at a depth of 4.5 mm.
Fig. 4.
Fig. 4. Examples of perturbation due to three different membranes of similar thickness but of different material, on measurements of CW reflectance. The figure reports the relative perturbation (R - R hom)/ R hom as a function of the depth of the membrane. Measurements have been repeated for three values of absorption for a diffusive medium with μs ' =1.0±0.05mm-1. The blue, green, red, and black curves refer to source-receiver distances ρ = 10, 20, 30, and 40 mm, respectively.
Fig. 5.
Fig. 5. Effect of a clear layer on measurements of time resolved reflectance. The three-layered medium has the first and the third layer (thickness 4.5 and 51 mm, respectively) with the same optical properties: μ s1 ' = μ s3 ' = 1.0 mm-1 and μ a1 = μ a3 = 0.01 mm-1. The figure shows the comparison between measurements for the homogeneous medium and for the layered medium with μ s2 ' = 0.1 mm-1 and μ a2 = 0.003 mm-1. The thickness of the second layer was 4.5 mm. The results for ρ = 20 and 40 mm are reported together with predictions of MC simulations.
Fig. 6.
Fig. 6. Time resolved mean path followed by received photons inside the second layer of a medium having: thickness of the first, second, and third layer 4.5, 4.5, and 51 mm respectively; μ s1 ' = μ s3 ' = 1.00 mm-1, μ s2 ' = 1.05 mm-1, μ a1 = μ a3 = 0.01 mm-1 and μ a2 = 0003 mm-1. The results are reported for measurements at ρ = 10, 20, 30, and 40 mm together with the prediction of the diffusion equation.
Fig. 7.
Fig. 7. Perturbation due to an absorbing inhomogeneity (volume = 1.1 ml, μsi ' = 5.7 mm-1 and μai = 0.012 mm-1) immersed into the third layer of a medium having: thickness of the first, second, and third layer 11, 3, and 46 mm respectively; μ s1 ' = 1.7 mm-1, μ s3 ' = 5.7 mm-1, μ a1 = μ a2 = μ a3 = 0.0003 mm-1. Results are shown for four values of μ s2 ' . The source and the receiver are at x = -20 and +20 mm respectively. The perturbation is reported as a function of the x-coordinate of the centre of the inhomogeneity for two values of the depth: 22 mm (red curve) and 25 mm (black curve) within the third layer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

l 2 ( t ) = 1 Δ μ a 2 ln R ( ρ , μ a 2 , t ) R ( ρ , μ a 2 + Δ μ a 2 , t ) .

Metrics