Abstract

We have demonstrated a carrier-envelope phase (CEP) stabilized chirped-pulse amplification (CPA) system employing a grating-based pulse stretcher and compressor and a regenerative amplifier for the first time. In addition to stabilizing the carrier-envelope offset phase of a laser oscillator, a new pulse selection method referenced to the carrier-envelope offset beat signal was introduced. The pulse-selection method is more robust against the carrier-envelope offset phase fluctuations than a simple pulse-clock dividing method. We observed a stable fringe in a self-referencing spectrum interferometry of the amplified pulse, which implies that the CEP of amplified pulse is stabilized. We also measured the effect of the beam angle change on the CEP of amplified pulses. The result demonstrates that the CEP stabilized CPA is scalable to higher-pulse energies.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz: �??Attosecond metrology�??, Nature 414, 509-513 (2001).
    [CrossRef] [PubMed]
  2. A. Baltuška, Th. Udem, M. Ulberacker, M. Hentschel, E. Goullelmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch and F. Krausz, �??Attosecond control of electronic processes by intense light fields,�?? Nature. 421, 611-615 (2003).
    [CrossRef]
  3. A. Baltuška, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. Hänsch, and F. Krausz, �??Phase-controlled amplification of few-cycle laser pulse,�?? IEEE J. Selected Topics in Quantum Electron. 9, 972-989 (2003).
    [CrossRef]
  4. A. Baltuška, T. Fuji, and T. Kobayashi, �??Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,�?? Phys. Rev. Lett. 88, 133901-133904 (2002).
    [CrossRef]
  5. R. Kienberger, E. Gouliemakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleinberg, U.Heinzmann, M. Drescher, and F. Krausz, �??Atomic transient recorder,�?? Nature 427, 817-821 (2004)
    [CrossRef] [PubMed]
  6. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, and H. Takahashi, �??Single-shot measurement of the carrier-envelope phase changes by spectral interferometry, �?? Opt. Lett. 26, 1436-1438 (2001).
    [CrossRef]
  7. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, and H. Takahashi, �??Measurements of carrier-envelope phase changes of 100-Hz amplified laser pulses,�?? Appl. Phys. B74[Suppl.], S43-S50 (2002).
    [CrossRef]
  8. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, H. Takamiya, K. Nishijima, T. Homma, and H. Takahashi, K. Okubo, S. Nakamura, Y. Koyamada, �??Carrier-envelope phae stabilized chirped-pulse amplification system using a grating-based pulse stretcher and compressor,�?? in Advanced Solid-State Photonics 2004 (Optical Society of America, 1-4 Feb 2004, Santa Fe, USA), PD7, (to appear in Trends in Optics and Photonics (TOPS) Vol. 94).
  9. B. E. Lemoff and C. P. J. Barty, �??Quintic-phase-limited, spatially uniform expansion and recompression of ultrashort optical pulses,�?? Opt. Lett. 18, 1651-1653 (1993).
    [CrossRef] [PubMed]
  10. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff: �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis�??, Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  11. H. Tsuchida, �??Wideband phase-noise mesurement of mode-locked laser pulses by a demodulation technique,�?? Opt. Lett. 23, 286-288 (1998).
    [CrossRef]
  12. M. Kakehata, Y. Fujihira, Y. Kobayashi, H. Takada, T. Homma, H. Takahashi, and K. Torizuka: �??Selection of pulses having a constant carrier-envelope phase from a relatively noisy mode-locked oscillator,�?? in Springer Series in Optical Science Vol.95, Ultrafast Optics IV, June 30-July 3, 2003, Vienna, Austria, (Springer, NewYork, 2004)
    [CrossRef]
  13. T. M. Fortier, J. Ye, and S. T. Cundiff, �??Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase�??, Opt. Lett. 27 445-447 (2002).
    [CrossRef]
  14. T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, �??Highly phase stable mode-locked lasers,�?? IEEE J. Selected Topics in Quantum Electron. 9, 1002-1010 (2003).
    [CrossRef]
  15. S. Witte, R. T. Zinkstok, W. Hogervorst, K. S. E. Eikema, �??Control and precise measurement of carrier-envelope phase dynamics,�?? Appl. Phys. B78, 5-12 (2004).
    [CrossRef]
  16. F. W. Helbing, G. Steinmeyer, and U. Keller, �??Carrier-envelope offset phase-locking with attosecond timing jitter,�?? IEEE J. Selected Topics in Quantum Electron. 9, 1030-1040 (2003).
    [CrossRef]
  17. K. Okubo, S. Nakamura, Y. Koyamada, M. Kakehata, Y. Kobayashi, H. Takada, K. Torizuka, H. Takamiya, K. Nishijima, T. Homma, and H. Takahashi, �??Properties of amplitude-to-phase noise conversion in selfreferencing method using microstructure fibers for carrier-envelope phase control,�?? in Advanced Solid- State Photonics 2004 (Optical Society of America, 1-4 Feb. 2004, Santa Fe, USA), TuB4, (to appear in Trends in Optics and Photonics (TOPS) Vol. 94).

Appl. Phys. B

S. Witte, R. T. Zinkstok, W. Hogervorst, K. S. E. Eikema, �??Control and precise measurement of carrier-envelope phase dynamics,�?? Appl. Phys. B78, 5-12 (2004).
[CrossRef]

Appl. Phys. B[Suppl.]

M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, and H. Takahashi, �??Measurements of carrier-envelope phase changes of 100-Hz amplified laser pulses,�?? Appl. Phys. B74[Suppl.], S43-S50 (2002).
[CrossRef]

IEEE J. Sel. Topics in Quant. Electron.

F. W. Helbing, G. Steinmeyer, and U. Keller, �??Carrier-envelope offset phase-locking with attosecond timing jitter,�?? IEEE J. Selected Topics in Quantum Electron. 9, 1030-1040 (2003).
[CrossRef]

T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, �??Highly phase stable mode-locked lasers,�?? IEEE J. Selected Topics in Quantum Electron. 9, 1002-1010 (2003).
[CrossRef]

IEEE J. Selected Topics in Quantum Elect

A. Baltuška, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. Hänsch, and F. Krausz, �??Phase-controlled amplification of few-cycle laser pulse,�?? IEEE J. Selected Topics in Quantum Electron. 9, 972-989 (2003).
[CrossRef]

Nature

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz: �??Attosecond metrology�??, Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

A. Baltuška, Th. Udem, M. Ulberacker, M. Hentschel, E. Goullelmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch and F. Krausz, �??Attosecond control of electronic processes by intense light fields,�?? Nature. 421, 611-615 (2003).
[CrossRef]

R. Kienberger, E. Gouliemakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleinberg, U.Heinzmann, M. Drescher, and F. Krausz, �??Atomic transient recorder,�?? Nature 427, 817-821 (2004)
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

A. Baltuška, T. Fuji, and T. Kobayashi, �??Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,�?? Phys. Rev. Lett. 88, 133901-133904 (2002).
[CrossRef]

Science

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff: �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis�??, Science 288, 635-639 (2000).
[CrossRef] [PubMed]

TOPS 2004

K. Okubo, S. Nakamura, Y. Koyamada, M. Kakehata, Y. Kobayashi, H. Takada, K. Torizuka, H. Takamiya, K. Nishijima, T. Homma, and H. Takahashi, �??Properties of amplitude-to-phase noise conversion in selfreferencing method using microstructure fibers for carrier-envelope phase control,�?? in Advanced Solid- State Photonics 2004 (Optical Society of America, 1-4 Feb. 2004, Santa Fe, USA), TuB4, (to appear in Trends in Optics and Photonics (TOPS) Vol. 94).

M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, H. Takamiya, K. Nishijima, T. Homma, and H. Takahashi, K. Okubo, S. Nakamura, Y. Koyamada, �??Carrier-envelope phae stabilized chirped-pulse amplification system using a grating-based pulse stretcher and compressor,�?? in Advanced Solid-State Photonics 2004 (Optical Society of America, 1-4 Feb 2004, Santa Fe, USA), PD7, (to appear in Trends in Optics and Photonics (TOPS) Vol. 94).

Ultrafast Optics IV, Series 2003

M. Kakehata, Y. Fujihira, Y. Kobayashi, H. Takada, T. Homma, H. Takahashi, and K. Torizuka: �??Selection of pulses having a constant carrier-envelope phase from a relatively noisy mode-locked oscillator,�?? in Springer Series in Optical Science Vol.95, Ultrafast Optics IV, June 30-July 3, 2003, Vienna, Austria, (Springer, NewYork, 2004)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig.1.
Fig.1.

Electric field and the envelope of few-cycle optical pulse

Fig. 2.
Fig. 2.

Diagram of the CEP stabilized CPA system

Fig. 3.
Fig. 3.

Self-referencing f-to-2f interferometer.DM: dichroic mirror, PBS: polarizing beam splitter, Pol: polarizer, G: grating, APD: Avalanche photodiode

Fig. 4.
Fig. 4.

Stability of the PLL-controlled CEO signal. (a) Stability of the controlled CEO beat signal (V CEO) relative to the reference signal (V ref) measured with an ocilloscope. (b) Power spectrum density of the phase noise (S ϕ) measured with a vector signal analyzer and the phase error calculated from integration of S ϕ.

Fig. 5.
Fig. 5.

(a) Calculation of the self-referencing SI signal for different CEP value. (b) Trace of the intensity at 400 nm component, which shows sinusoidal intensity modulation corresponding to the CEO beat signal.

Fig. 6.
Fig. 6.

CEP error of the selected pulse as a function of the delay between the divider and the ready pulse

Fig. 7.
Fig. 7.

(a) Measurement of the CEP jitter of regenerative amplifier seed pulses. The delay between the divider and the ready pulse was 3.4 μs. The upper distribution (blue) shows the histogram of the timing jitter of V ceo. (b) Histogram of the CEP error (red dots) and the fitted Gaussian distribution with σ=0.42rad (dotted line).

Fig. 8.
Fig. 8.

Spectrum of CEP stabilized amplified pulse

Fig. 9.
Fig. 9.

(a) Spectrum of the output pulse from the hollow-core fiber filled with Kr gas. (b) Spectrum of the fundamental component and the second harmonic component after the second harmonic crystal. (c) Self-referencing spectrum for the CEP-stabilized pulses. f Amp=762Hz, and the exposure time of CCD was set 21msec (16 pulses for one exposure)

Fig. 10.
Fig. 10.

Self-referencing SI of amplified pulse. 1-sec integrated spectrum (upper), and temporal evolution of the fringe (lower). f Amp = 762Hz, Exposure time of CCD is 21 msec (16 pulses for one exposure). (a) Measured with the CEP of the seed pulse was not stabilized, and (b) measured with the CEP of seed pulses was stabilized.

Fig. 11.
Fig. 11.

Self-referencing SI of amplified pulse. (a) 10-sec integrated spectrum (upper), and temporal evolution of the fringe (lower). f Amp=762Hz, Exposure time of CCD is 21 msec (16 pulses for one exposure). (b) Comparison of the integrated spectra for different integration periods.

Fig. 12.
Fig. 12.

(a) Temporal evolution of self-referencing SI fringe measured with changing the CEP of the seeding pulse by changing the delay of the f-to-2f interferometer by 1.7 μm at 1Hz. The fringe shows phase shift of 16.9rad. (b) Observed CEP shift as a function of the calculated CEP shift from the delay in the f-to-2f interferometer. The slope is 0.76.

Fig. 13.
Fig. 13.

(a) Temporal evolution of self-referencing SI fringe measured with changing the beam direction to the pulse stretcher. Peak to peak angle change was 84 μrad and measured fringe (CEP) shift was 7.0rad. (b) Measured fringe shift as a function of the peak to peak angle change. The slope is 8.3×104 rad/rad

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ error = ν high ν low S ϕ d v
I ( ω ) = I F ( ω ) + I SH ( ω ) + 2 I F ( ω ) I SH ( ω ) cos ( ω τ + ϕ + ϕ const )
Δ ϕ cep , AP = C AP P ( Δ P P )

Metrics