Abstract

A novel multiwavelength erbium-doped fiber laser configuration is proposed and demonstrated. The laser can produce simultaneous four-wavelength lasing oscillations with a minimum wavelength spacing of only 0.36 nm in C-band via using two fiber Bragg gratings written in high birefringence fiber, while ensuring fairly stable room-temperature operation. The laser can also achieve switching modes among four wavelengths by simple adjustment of two polarization controllers in the cavities. The configuration is based on the polarization hole burning and overlapping cavities principle. The laser has the advantages of simple all-fiber configuration, low cost, high stability and operating at room temperature.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Ding, G. Kai, Y. Xu, B. Guan, S. Yuan, X. Dong, and C. Ge, �??A four-wavelength all-fiber laser for wavelength division multiplexing system,�?? Chin. Phys. Lett. 18, 376-378 (2001).
    [CrossRef]
  2. R. Slavik and S. LaRochelle, Multiwavelength single�??mode erbium doped fiber laser for FFH�??OCDMA testing, in Proc. OFC 2002, Paper WJ3, 245-246 (2002).
  3. L. Talaverano, S. Abad, S. Jarabo, and M. Lopez-Amo, �??Multiwavelength fiber laser sources with Bragg�??grating sensor multiplexing capability,�?? J. Lightwave Technol. 19, 553-558 (2001).
    [CrossRef]
  4. T. Miyazaki, N. Edagawa, S. Yamamoto, and S. Akiba, �??A multiwavelength fiber ring-laser employing a pair of silica-based arrayed-waveguide-grating,�?? IEEE Photon. Technol. Lett. 9, 910�??912 (1997).
    [CrossRef]
  5. G.Brochu, R. Slavik, and S. LaRochelle, �??Ultra-compact 52 mW 50-GHz spaced 16 channels narrow-line and single-polarization fiber laser,�?? OFC�??2004, Paper PDP-22, 1522-1524(2004).
  6. S. Yamashita and K. Hotate, �??Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,�?? Electron. Lett. 32, 1298-1299 (1996).
    [CrossRef]
  7. S. Yamashita and T. Baba, �??Spacing-tunable multiwavelength fiber laser,�?? Electron. Lett. 37, 1015-1017 (2001).
    [CrossRef]
  8. J. N. Maran, S. Larochelle, P. Besnard, �??C-band multi-wavelength frequency-shifted erbium-doped fiber laser,�?? Opt. Commun. 218, 81-86 (2003).
    [CrossRef]
  9. J. Sun, J. Qiu, D. Huang, �??Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning,�?? Opt. Commun. 182, 193-197 (2000).
    [CrossRef]
  10. C. Zhao, X. Yang, J. H. Ng, X. Dong, X. Guo, X. Wang, X. Zhou, and C. Lu, �??Switchable dual-wavelength erbium-doped fiber-ring lasers using a fiber Bragg grating in high-birefringence fiber,�?? Microwave and optical Technol. Lett., 41, 73-75 (2004).
    [CrossRef]
  11. X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, �??Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating,�?? IEEE Photon. Technol. Lett. 16, 762-764 (2004).
    [CrossRef]
  12. C. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, J. H. Ng, X. Guo, R. C. Partha, and X. Dong, �??Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,�?? Opt. Commun. 230, 313-317 (2004).
    [CrossRef]
  13. Q.Mao and J. W. Y. Lit, �??Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,�?? IEEE Photon. Technol. Lett. 14, 612-614 (2002).
    [CrossRef]
  14. Q. Mao and J. W. Y. Lit, �??Multiwavelength erbium-doped fiber lasers with active overlapping linear cavities,�?? J. Lightwave Technol. 21, 160-168 (2003).
    [CrossRef]

Chin. Phys. Lett.

L. Ding, G. Kai, Y. Xu, B. Guan, S. Yuan, X. Dong, and C. Ge, �??A four-wavelength all-fiber laser for wavelength division multiplexing system,�?? Chin. Phys. Lett. 18, 376-378 (2001).
[CrossRef]

Electron. Lett.

S. Yamashita and K. Hotate, �??Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,�?? Electron. Lett. 32, 1298-1299 (1996).
[CrossRef]

S. Yamashita and T. Baba, �??Spacing-tunable multiwavelength fiber laser,�?? Electron. Lett. 37, 1015-1017 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Miyazaki, N. Edagawa, S. Yamamoto, and S. Akiba, �??A multiwavelength fiber ring-laser employing a pair of silica-based arrayed-waveguide-grating,�?? IEEE Photon. Technol. Lett. 9, 910�??912 (1997).
[CrossRef]

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, �??Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating,�?? IEEE Photon. Technol. Lett. 16, 762-764 (2004).
[CrossRef]

Q.Mao and J. W. Y. Lit, �??Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,�?? IEEE Photon. Technol. Lett. 14, 612-614 (2002).
[CrossRef]

J. Lightwave Technol.

Microwave and optical Technol. Lett.

C. Zhao, X. Yang, J. H. Ng, X. Dong, X. Guo, X. Wang, X. Zhou, and C. Lu, �??Switchable dual-wavelength erbium-doped fiber-ring lasers using a fiber Bragg grating in high-birefringence fiber,�?? Microwave and optical Technol. Lett., 41, 73-75 (2004).
[CrossRef]

OFC???2004

G.Brochu, R. Slavik, and S. LaRochelle, �??Ultra-compact 52 mW 50-GHz spaced 16 channels narrow-line and single-polarization fiber laser,�?? OFC�??2004, Paper PDP-22, 1522-1524(2004).

Opt. Commun.

J. N. Maran, S. Larochelle, P. Besnard, �??C-band multi-wavelength frequency-shifted erbium-doped fiber laser,�?? Opt. Commun. 218, 81-86 (2003).
[CrossRef]

J. Sun, J. Qiu, D. Huang, �??Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning,�?? Opt. Commun. 182, 193-197 (2000).
[CrossRef]

C. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, J. H. Ng, X. Guo, R. C. Partha, and X. Dong, �??Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,�?? Opt. Commun. 230, 313-317 (2004).
[CrossRef]

Proc. OFC 2002

R. Slavik and S. LaRochelle, Multiwavelength single�??mode erbium doped fiber laser for FFH�??OCDMA testing, in Proc. OFC 2002, Paper WJ3, 245-246 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of the four-wavelength EDFL

Fig. 2.
Fig. 2.

The transmission spectra of the HB-FBGs.

Fig. 3.
Fig. 3.

The output spectra of the four-wavelength EDFL.

Fig. 4.
Fig. 4.

The output repeated scanning spectra of the four-wavelength EDFL.

Fig. 5.
Fig. 5.

The output repeated scanning spectra of one of the two-wavelength switch mode.

Fig. 6.
Fig. 6.

The output repeated scanning spectra of one of the three-wavelength switch mode.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R 0 R 1 l 11 2 G 11 2 = 1 ,
R 0 R 2 l 21 2 G 21 2 = 1 ,
R 0 R 3 l 31 2 G 31 2 l 32 2 G 32 2 = 1 ,
R 0 R 4 l 41 2 G 41 2 l 42 2 G 42 2 = 1 ,

Metrics