Abstract

We propose a new structure of highly nonlinear dispersion-flattened (HNDF) photonic crystal fiber (PCF) with nonlinear coefficient as large as 30 W-1km-1 at 1.55 μm designed by varying the diameters of the air-hole rings along the fiber radius. This innovative HNDF-PCF has a unique effective-index profile that can offer not only a large nonlinear coefficient but also flat dispersion slope and low leakage losses. It is shown through numerical results that the novel microstructured optical fiber with small normal group-velocity dispersion and nearly zero dispersion slope offers the possibility of efficient supercontinuum generation in the telecommunication window using a few ps pulses.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. St. J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. M.J. Gander, R. McBride, J.D.C. Jones, D. Mogilevtsev, T.A. Birks, J.C. Knight, and P. St. J. Russell, �??Experimantal measurement of group velocity dispersion in photonic crystal fibre,�?? Electron. Lett. 35, 63-64 (1999).
    [CrossRef]
  3. A. Ferrando, E. Silvestre, P. Andrés, J.J. Miret, and M.V. Andrés, �??Desinging the properties of dispersion-flattened photonic crystal fibers,�?? Opt. Express 9, 687-697 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687</a>
    [CrossRef] [PubMed]
  4. W.H. Reeves, J.C. Knight, P. St. J. Russell, and P. J. Roberts, �??Demonstration of ultra-flattened dispersion in photonic crystal fibers,�?? Opt. Express 10, 609-613 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609</a>
    [CrossRef] [PubMed]
  5. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, �??Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,�?? Opt. Express 11, 843-852 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843</a>.
    [CrossRef] [PubMed]
  6. A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres, (Kluwer Academic Publishers, 2003).
    [CrossRef]
  7. V. Finazzi, T.M. Monro, and D.J. Richardson, �??Small-core holey fibers: nonlinearity and confinement loss trade-offs,�?? J. Opt. Soc. Am. B 20, 1427-1436 (2003).
    [CrossRef]
  8. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, �??Supercontinuum generation at 1.55 µm in a dispersion-flattened polarization-maintaining photonic crystal fiber,�?? Opt. Express 11, 1537- 1540 (2003), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1537">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1537</a>.
    [CrossRef] [PubMed]
  9. W. Lieber, M. Loch, H. Etzkorn, W.E. Heinlein, K.-F. Klein, H.U. Bonewitz, and A. Mühlich, �??Three-step index strictly single-mode, only F-doped silica fibers for broad-band low dispersion,�?? J. Lightwave Technol. LT-4, 715-719 (1986).
    [CrossRef]
  10. K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002) .
    [CrossRef]
  11. T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, �??Highly nonlinear and perfectly dispersion-flattened fibers for efficient optical signal processing applications,�?? Electron. Lett. 39, 972-974 (2003).
    [CrossRef]
  12. T. Morioka, K. Okamoto, M. Ishii, and M. Saruwatari, �??Low-noise, pulsewidth tunable picosecond to femtosecond pulse generation by spectral filtering of wideband supercontinuum with variable bandwidth arrayed-waveguide grating filters,�?? Electron. Lett. 32, 836-837 (1996).
    [CrossRef]
  13. Y. Takushima, F. Futami, and K. Kikuchi, �??Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,�?? IEEE Photon. Technol. Lett. 10, 1560-1562 (1998).
    [CrossRef]
  14. G. Agrawal, Nonlinear Fiber Optics, Academic Press (San Diego, CA), 2dn Edition (1995).

Electron. Lett. (3)

M.J. Gander, R. McBride, J.D.C. Jones, D. Mogilevtsev, T.A. Birks, J.C. Knight, and P. St. J. Russell, �??Experimantal measurement of group velocity dispersion in photonic crystal fibre,�?? Electron. Lett. 35, 63-64 (1999).
[CrossRef]

T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, �??Highly nonlinear and perfectly dispersion-flattened fibers for efficient optical signal processing applications,�?? Electron. Lett. 39, 972-974 (2003).
[CrossRef]

T. Morioka, K. Okamoto, M. Ishii, and M. Saruwatari, �??Low-noise, pulsewidth tunable picosecond to femtosecond pulse generation by spectral filtering of wideband supercontinuum with variable bandwidth arrayed-waveguide grating filters,�?? Electron. Lett. 32, 836-837 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002) .
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Takushima, F. Futami, and K. Kikuchi, �??Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,�?? IEEE Photon. Technol. Lett. 10, 1560-1562 (1998).
[CrossRef]

J. Lightwave Technol. (1)

W. Lieber, M. Loch, H. Etzkorn, W.E. Heinlein, K.-F. Klein, H.U. Bonewitz, and A. Mühlich, �??Three-step index strictly single-mode, only F-doped silica fibers for broad-band low dispersion,�?? J. Lightwave Technol. LT-4, 715-719 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Science (1)

P. St. J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (2)

A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres, (Kluwer Academic Publishers, 2003).
[CrossRef]

G. Agrawal, Nonlinear Fiber Optics, Academic Press (San Diego, CA), 2dn Edition (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Examples of PCFs and their effective refractive-index profiles. The air-hole diameters are (a) d 1 > d 2 = … = dn and (b) d 2 < d 1 = d 3 = … = dn .

Fig. 2.
Fig. 2.

(a) Highly nonlinear dispersion-flattened PCF with ten air-hole rings and (b) its effective refractive-index profile. The hole-to-hole spacing is Λ = 0.89 μm and the air-hole diameters are d 1 = 0.41Λ, d 2 = 0.85Λ, d 3 = 0.92Λ, d 4 = 0.53Λ, d 5 = … = d 10 = 0.60Λ.

Fig. 3.
Fig. 3.

(a) Chromatic dispersion curve, (b) confinement loss, and (c) effective mode area as a function of wavelength for the HNDF-PCF with ten air-hole rings in Fig. 2(a).

Fig. 4.
Fig. 4.

Evolution of (a) waveforms and (b) spectrums in HNDF-PCF.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z + α 2 A + i 2 β 2 2 A T 2 1 6 β 3 3 A T 3 i 24 β 4 4 A T 4 = i γ [ A 2 A + i λ c 2 π c T ( A 2 A ) T R A A 2 T ] ,

Metrics