Abstract

The optical gain-depletion-induced mode-locking dynamics of a semiconductor optical-amplifier–based fiber ring laser (SOAFL) backward injected by a purely sinusoidally modulated or digitally encoded distributed-feedback laser diode are theoretically and experimentally demonstrated. The effect of gain depletion and waveform on the mode-locked pulse width, pulse shape, and power of the SOAFL are interpreted from theoretical simulations. The shortest pulse width of 12 ps can be generated from an optically sinusoidal-wave-modulated SOAFL. By backward injecting the SOAFL with a digitally encoded optical signal of adjustable duty cycle, one can observe the optimized gain depletion time of 400–600 ps required for mode locking the SOAFL.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. D. Kafka, T. M. Baer, and D. W. Hall, �??Mode-locked erbium fiber laser,�?? in Conference on Lasers and Electro-Optics, Vol. 11 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper FA3.
  2. E. Yoshida and M. Nakazawa, �??80�??200 GHz erbium doped fiber laser using a rational harmonic mode-locking technique,�?? Electron. Lett. 32, 1370-1372 (1996).
    [CrossRef]
  3. A. Takada and H. Miyazawa, �??30 GHz picosecond pulse generation from actively mode-locked erbium-doped fiber laser,�?? Electron. Lett. 26, 216-217 (1990).
    [CrossRef]
  4. J. S. Wey, J. Goldhar, D. W. Rush, M. W. Chbat, G. M. Carter, and G. L. Burdge, �??Performance characterization of a harmonically mode-locked erbium fiber ring laser,�?? IEEE Photon. Technol. Lett. 7, 152-154 (1995).
    [CrossRef]
  5. J. B. Schlager, Y. Yamabayashi, D. L. Franzen, and R. J. Juneau, �??Mode-locked long-cavity erbium fiber lasers with subsequent soliton-like compression,�?? IEEE Photon. Technol. Lett. 1, 264-266 (2001).
    [CrossRef]
  6. U. Koren, B. I. Miller, M. G. Young, T. L. Koch, R. M. Jopson, A. H. Gnavok, J. D. Evankow, and M. Chien, �??High frequency modulation of strained layer multiple quantum well optical amplifiers,�?? Electron. Lett. 27, 62- 64 (1991).
    [CrossRef]
  7. D. M. Patrick, �??Modelocked ring laser using nonlinearity in a semiconductor laser amplifier,�?? Electron. Lett. 30, 43-44 (1994).
    [CrossRef]
  8. T. Papakyriakopoulos, K. Vlachos, A. Hatziefremidis, and H. Avramopoulos, �??20-GHz broadly tunable and stable mode-locked semiconductor amplifier fiber ring laser,�?? Opt. Lett. 24, 1209-1211 (1999).
    [CrossRef]
  9. T. Papakyriakopoulos, A. Hatziefremidis, T. Houbavlis, and H. Avramopoulos, �??10 GHz mode-locked ring laser with external optical modulation of a semiconductor optical amplifier,�?? in Optical Fiber Communication Conference (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1999), pp. 4-6, paper TuB1.
  10. K. Zoiros, K. Vlachos, T. Stathopoulos, C. Bintjas, and H. Avramopoulos, �??40 GHz mode-locked SOA fiber ring laser with 20 nm tuning range,�?? in Optical Fiber Communication Conference (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 2000), pp. 254-256.
  11. K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, �??10 simultaneously mode-locked and synchronized channels at 30 GHz from fiber ring laser,�?? in Optical Fiber Communication Conference (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 2000), pp. 344-246.
  12. L. Schares, L. Occhi, and G. Guekos, �??Picosecond wavelength tunable SOA-based laser sources at 10-40 GHz repetition rates,�?? in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D. C., 2002), pp. 56-57, paper CML3.
  13. J. He and K. T. Chan, �??All-optical actively modelocked fibre ring laser based on cross-gain modulation in SOA,�?? Electron. Lett. 38, 1504-1505 (2002).
    [CrossRef]
  14. G.-Q. Xia, Z.-M. Wu, and G.-R. Lin, �??Rising and falling time of amplified picosecond optical pulse by semiconductor optical amplifiers,�?? Opt. Commun. 227, 165-170 (2003).
    [CrossRef]
  15. A. E. Willner and W. Shieh, �??Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability,�?? J. Lightwave Technol. 13, 771-781 (1995).
    [CrossRef]

CLEO (1)

L. Schares, L. Occhi, and G. Guekos, �??Picosecond wavelength tunable SOA-based laser sources at 10-40 GHz repetition rates,�?? in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D. C., 2002), pp. 56-57, paper CML3.

Electron. Lett. (5)

J. He and K. T. Chan, �??All-optical actively modelocked fibre ring laser based on cross-gain modulation in SOA,�?? Electron. Lett. 38, 1504-1505 (2002).
[CrossRef]

E. Yoshida and M. Nakazawa, �??80�??200 GHz erbium doped fiber laser using a rational harmonic mode-locking technique,�?? Electron. Lett. 32, 1370-1372 (1996).
[CrossRef]

A. Takada and H. Miyazawa, �??30 GHz picosecond pulse generation from actively mode-locked erbium-doped fiber laser,�?? Electron. Lett. 26, 216-217 (1990).
[CrossRef]

U. Koren, B. I. Miller, M. G. Young, T. L. Koch, R. M. Jopson, A. H. Gnavok, J. D. Evankow, and M. Chien, �??High frequency modulation of strained layer multiple quantum well optical amplifiers,�?? Electron. Lett. 27, 62- 64 (1991).
[CrossRef]

D. M. Patrick, �??Modelocked ring laser using nonlinearity in a semiconductor laser amplifier,�?? Electron. Lett. 30, 43-44 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. S. Wey, J. Goldhar, D. W. Rush, M. W. Chbat, G. M. Carter, and G. L. Burdge, �??Performance characterization of a harmonically mode-locked erbium fiber ring laser,�?? IEEE Photon. Technol. Lett. 7, 152-154 (1995).
[CrossRef]

J. B. Schlager, Y. Yamabayashi, D. L. Franzen, and R. J. Juneau, �??Mode-locked long-cavity erbium fiber lasers with subsequent soliton-like compression,�?? IEEE Photon. Technol. Lett. 1, 264-266 (2001).
[CrossRef]

J. Lightwave Technol. (1)

A. E. Willner and W. Shieh, �??Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability,�?? J. Lightwave Technol. 13, 771-781 (1995).
[CrossRef]

OFC (3)

T. Papakyriakopoulos, A. Hatziefremidis, T. Houbavlis, and H. Avramopoulos, �??10 GHz mode-locked ring laser with external optical modulation of a semiconductor optical amplifier,�?? in Optical Fiber Communication Conference (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1999), pp. 4-6, paper TuB1.

K. Zoiros, K. Vlachos, T. Stathopoulos, C. Bintjas, and H. Avramopoulos, �??40 GHz mode-locked SOA fiber ring laser with 20 nm tuning range,�?? in Optical Fiber Communication Conference (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 2000), pp. 254-256.

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, �??10 simultaneously mode-locked and synchronized channels at 30 GHz from fiber ring laser,�?? in Optical Fiber Communication Conference (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 2000), pp. 344-246.

Opt. Commun. (1)

G.-Q. Xia, Z.-M. Wu, and G.-R. Lin, �??Rising and falling time of amplified picosecond optical pulse by semiconductor optical amplifiers,�?? Opt. Commun. 227, 165-170 (2003).
[CrossRef]

Opt. Lett. (1)

OSA Technical Digest Series (1)

J. D. Kafka, T. M. Baer, and D. W. Hall, �??Mode-locked erbium fiber laser,�?? in Conference on Lasers and Electro-Optics, Vol. 11 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper FA3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic diagram of the backward-injection mode-locked SOAFL: RFS, rf synthesizer; PG, pattern generator; Amp, power amplifier; COMB, comb generator; SW, rf switch; ISO, optical isolator; Circulator, optical circulator; OC, optical coupler.

Fig. 2.
Fig. 2.

Temporal traces of measured pulse width and peak power versus detuning injection power.

Fig. 3.
Fig. 3.

Experimental (solid curve) and simulated (dashed curve) pulse shapes of a SOAFL that is mode locked by a sinusoidal-wave-modulated DFBLD (dotted curve).

Fig. 4.
Fig. 4.

Reciprocal frequency dependence of pulse width and corresponding spectrum of the SOAFL pulses repeated at 5 GHz.

Fig. 5.
Fig. 5.

Pulse trains (black curves) and corresponding injection waveforms (gray curves) with repetition rates from 1 to 5 GHz.

Fig. 6.
Fig. 6.

Experimental (solid curve) and theoretically simulated pulse (dashed curve) shapes of a SOAFL that is mode locked by backward injection with a gain-switched DFBLD (dotted curve).

Fig. 7.
Fig. 7.

Darker curves, experimental pulse train with several injected SOA currents; lighter curves, simulated results.

Fig. 8.
Fig. 8.

Darker curves, experimental pulse train with several injected linewidth pulses; lighter curves, simulated results.

Fig. 9(a).
Fig. 9(a).

Output of the word pattern, the encoded DFBLD, the simulated SOA gain profile, and the mode-locked SOAFL.

Fig. 9(b).
Fig. 9(b).

Experimentally encoded DFBLD output (top) and mode-locked SOAFL output (bottom).

Fig. 10.
Fig. 10.

Left, trend traces of pulse widths with various depletion times from 125 to 875 ps; right, the corresponding injection word patterns.

Tables (1)

Tables Icon

Table 1: The parameters for modeling the DFBLD backward-injection mode-locked SOAFL

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

N j ( z , T ) T = I q V N j τ c ( Γ g m , j ( N j ( z , T ) ) ħ ω m A cross P ¯ m , j + Γ g s , j ( N j ( z , T ) ) ħ ω s A cross P ¯ s , j ) ,
P m , j ( z , T ) z = Γ ( g m , j ( N j ( z , T ) ) α int ) P m , j ( z , T ) ,
P s , j ( z , T ) z = Γ ( g s , j ( N ( z , T ) ) α int ) P s , j ( z , T ) ,
P ¯ m , j = 1 Δ L ( j + 1 ) Δ L Δ L P m , j + 1 e ( Γ g m , j ( N j ) α in ) z dz = G m , j 1 ln ( G m , j ) P m , j + 1 ,
P ¯ s , j = 1 Δ L ( j 1 ) Δ L j Δ L P s , j 1 e ( Γ g s , j ( N j ) α in ) z dz = G s , j 1 ln ( G s , j ) P s , j 1 .
g mj = a 1 ( N j N 0 ) a 2 ( λ m λ Nj ) 2 + a 3 ( λ m λ Nj ) 3 ,
g sj = a 1 ( N j N 0 ) a 2 ( λ s λ Nj ) 2 + a 3 ( λ s λ Nj ) 3 ,

Metrics