Abstract

We report on measurements in transmission of the speckle produced by scattering liquid media: diluted milk and water solutions of polystyrene-microspheres of different diameters. The speckle size is affected not only by scattering parameters such as the optical thickness, but also by the dimensions of the scatters. From the speckle measurement, we propose a method to differentiate media. Moreover, a calculation of the transmitted light profile by Monte Carlo simulation allowed us to get a better insight on the speckle size evolution versus scattering.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.W. Goodman, �??Statistical Properties of Laser Speckle Patterns,�?? in Laser speckle and related phenomena, Vol.9 in series Topics in Applied Physics, J.C. Dainty, Ed., (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984).
  2. J.H. Churnside and H.T. Yura, �??Velocity measurement using laser speckle statistics,�?? Appl. Opt. 20, 3539-3541 (1981).
    [CrossRef] [PubMed]
  3. D.A. Boas and A. G. Yodh, �??Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,�?? J. Opt. Soc. Am. A 14, 192-215 (1997).
    [CrossRef]
  4. Y.Aizu, T.Asakura, �??Bio-speckle phenomena and their application to the evaluation of blood flow,�?? Opt. Las. Tech. 23, 205-219 (1991).
    [CrossRef]
  5. I.V. Fedosov and V.V. Tuchin, �??The use of dynamic speckle field space time correlation function estimates for the direction and velocity determination of blood flow,�?? Proc. of SPIE 4434, 192-196 (2001).
    [CrossRef]
  6. J.D. Briers, G. Richards and X.W. He, �??Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),�?? J. Biomed. Opt. 4, 164-175 (1999).
    [CrossRef] [PubMed]
  7. D.A. Zimnyakov, J.D. Briers, V.V. Tuchin, �??Speckle technologies for monitoring and imaging of tissues and tissuelike phantoms,�?? Chap.18 in Handbook of biomedical diagnostics, Valery V. Tuchin, Ed. (SPIE press, Bellingham 2002).
  8. P. Lehmann, �??Surface-roughness measurement based on the intensity correlation function of scattered light under speckle-pattern illumination,�?? Appl. Opt. 38, 1144-1152 (1999).
    [CrossRef]
  9. G. Da Costa and J. Ferrari, �??Anisotropic speckle patterns in the light scattered by rough cylindrical surfaces,�?? Appl. Opt. 36, 5231-5237 (1997).
    [CrossRef] [PubMed]
  10. R. Berlasso, F. Perez Quintian, M.A. Rebollo, C.A. Raffo and N.G. Gaggioli, �??Study of speckle size of light scattered from cylindrical rough surfaces,�?? Appl. Opt. 39, 5811-5819 (2000).
    [CrossRef]
  11. A. Sadhwani, K.T. Schomaker, G.J. Tearney and N.S. Nishioka, �??Determination of Teflon thickness with laser speckle. I. Potential for burn depth diagnosis,�?? Appl. Opt. 35, 5727-5735 (1996).
    [CrossRef] [PubMed]
  12. M. Giglio, M. Carpineti, A. Vailati and D. Brogioli, �??Near-field intensity correlation of scattered light,�?? Appl. Opt. 40, 4036-4040 (2001).
    [CrossRef]
  13. N.L. Swanson, B.D. Billard, and T.L. Gennaro, �??Limits of optical transmission measurements with application to particle sizing techniques,�?? Appl. Opt. 38, 5887-5893 (1999).
    [CrossRef]
  14. H.C. Van de Hulst, Light scattering by small particles (New York, Dover, 1981).
  15. G. Yoon, S.A. Prahl and A.J. Welch, �??Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media,�?? Appl. Opt. 28, 2250-2255 (1989).
    [CrossRef] [PubMed]
  16. Terri L. Alexander, James E. Harvey, and Arthur R. Weeks, �??Average speckle size as a function of intensity threshold level: comparison of experimental measurements with theory,�?? Appl. Opt. 33, 8240-8250 (1994).
    [CrossRef] [PubMed]
  17. C.A. Thompson, K.J. Webb, and A.M. Weiner, �??Imaging in scattering media by use of laser speckle,�?? J. Opt. Soc. Am. A 14, 2269-2277 (1997).
    [CrossRef]

Appl. Opt.

J.H. Churnside and H.T. Yura, �??Velocity measurement using laser speckle statistics,�?? Appl. Opt. 20, 3539-3541 (1981).
[CrossRef] [PubMed]

P. Lehmann, �??Surface-roughness measurement based on the intensity correlation function of scattered light under speckle-pattern illumination,�?? Appl. Opt. 38, 1144-1152 (1999).
[CrossRef]

G. Da Costa and J. Ferrari, �??Anisotropic speckle patterns in the light scattered by rough cylindrical surfaces,�?? Appl. Opt. 36, 5231-5237 (1997).
[CrossRef] [PubMed]

R. Berlasso, F. Perez Quintian, M.A. Rebollo, C.A. Raffo and N.G. Gaggioli, �??Study of speckle size of light scattered from cylindrical rough surfaces,�?? Appl. Opt. 39, 5811-5819 (2000).
[CrossRef]

A. Sadhwani, K.T. Schomaker, G.J. Tearney and N.S. Nishioka, �??Determination of Teflon thickness with laser speckle. I. Potential for burn depth diagnosis,�?? Appl. Opt. 35, 5727-5735 (1996).
[CrossRef] [PubMed]

M. Giglio, M. Carpineti, A. Vailati and D. Brogioli, �??Near-field intensity correlation of scattered light,�?? Appl. Opt. 40, 4036-4040 (2001).
[CrossRef]

N.L. Swanson, B.D. Billard, and T.L. Gennaro, �??Limits of optical transmission measurements with application to particle sizing techniques,�?? Appl. Opt. 38, 5887-5893 (1999).
[CrossRef]

G. Yoon, S.A. Prahl and A.J. Welch, �??Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media,�?? Appl. Opt. 28, 2250-2255 (1989).
[CrossRef] [PubMed]

Terri L. Alexander, James E. Harvey, and Arthur R. Weeks, �??Average speckle size as a function of intensity threshold level: comparison of experimental measurements with theory,�?? Appl. Opt. 33, 8240-8250 (1994).
[CrossRef] [PubMed]

J. Biomed. Opt.

J.D. Briers, G. Richards and X.W. He, �??Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),�?? J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Las. Tech.

Y.Aizu, T.Asakura, �??Bio-speckle phenomena and their application to the evaluation of blood flow,�?? Opt. Las. Tech. 23, 205-219 (1991).
[CrossRef]

Proc. of SPIE

I.V. Fedosov and V.V. Tuchin, �??The use of dynamic speckle field space time correlation function estimates for the direction and velocity determination of blood flow,�?? Proc. of SPIE 4434, 192-196 (2001).
[CrossRef]

Topics in Applied Physics

J.W. Goodman, �??Statistical Properties of Laser Speckle Patterns,�?? in Laser speckle and related phenomena, Vol.9 in series Topics in Applied Physics, J.C. Dainty, Ed., (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984).

Other

D.A. Zimnyakov, J.D. Briers, V.V. Tuchin, �??Speckle technologies for monitoring and imaging of tissues and tissuelike phantoms,�?? Chap.18 in Handbook of biomedical diagnostics, Valery V. Tuchin, Ed. (SPIE press, Bellingham 2002).

H.C. Van de Hulst, Light scattering by small particles (New York, Dover, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Speckle produced by a weak diffusing medium.

Fig. 2.
Fig. 2.

cIm (x, 0) calculated from speckle of fig. 1.

Fig. 3.
Fig. 3.

Experimental set-up (top view).

Fig. 4.
Fig. 4.

dxm versus θ.

Fig. 5.
Fig. 5.

dym versus θ.

Fig. 6.
Fig. 6.

dym versus ls, the opticalthickness for semi-skimmed milk.

Fig. 7.
Fig. 7.

dym versus ls, the optical thickness for skimmed milk.

Fig. 8.
Fig. 8.

dc versus ls for skimmed milk.

Fig.9. .
Fig.9. .

dym versus ls and linear fit for different polystyrene-microspheres.

Fig. 10.
Fig. 10.

Contrast evolution versus ls for different polystyrene-microspheres.

Fig. 11.
Fig. 11.

dc versus ls for the polystyrene-microspheres.

Tables (3)

Tables Icon

Table 1. Scattering coefficients of polystyrene microspheres measured.

Tables Icon

Table 2. Anisotropy factor of polystyrene microspheres calculated.

Tables Icon

Table 3. Parameters obtained with the proposed method for polystyrene microspheres.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

P ( r , q ) s = μ t P ( r , q ) + μ s 4 π 4 π P ( r , q ) β ( q , q ) d Ω
R I ( Δ x , Δ y ) = I ( x 1 , y 1 ) I ( x 2 , y 2 )
R I ( Δ x , Δ y ) = R I ( x , y )
c I ( x , y ) = R I ( x , y ) I ( x , y ) 2 I ( x , y ) 2 I ( x , y ) 2
R I ( x , y ) = FT 1 [ PSD I ( υ x , υ y ) ]
PSD I ( υ x , υ y ) = FT [ I ( x , y ) ] 2
c I m ( x , y ) = FT 1 [ FT [ I ( x , y ) ] 2 ] I ( x , y ) 2 I ( x , y ) 2 I ( x , y ) 2
R I ( x , y ) = I 2 [ 1 + μ A ( x , y ) 2 ]
μ A ( x , y ) 2 = P ( u , v ) exp [ i 2 π λ z ( ux + vy ) ] dudv P ( u , v ) dudv 2 = c I ( x , y )
{ X = x λ z Y = y λ z
c I ( x , y ) = F p ( X , Y ) 2 P ( u , v ) dudv 2
F p ( X , Y ) = P ( u , v ) exp [ i 2 π ( uX + vY ) ] dudv
c I c ( x ) = F p ( X ) 2 P ( u ) du 2
d y m ( θ = 5 ° ) d y m ( θ = 0 ° )
d y m = 30 l s + 219
d y m = 48 l s + 218
d c = 66 l s + 216
C = I 2 ( x , y ) I ( x , y ) 2 I ( x , y )

Metrics