Abstract

The simulation of beam propagation is used to examine the uncertainty inherent to the process of optical power measurement with a practical heterodyne lidar because of the presence of refractive turbulence. The approach has made possible the foremost study of the statistics of the coherent return fluctuations in the turbulent atmosphere for which there is no existing theory to be considered.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Belmonte and B. J. Rye, �??Heterodyne lidar returns in turbulent atmosphere: performance evaluation of simulated systems,�?? Appl. Opt. 39, 2401-2411 (2000).
    [CrossRef]
  2. B. J. Rye, �??Refractive-turbulent contribution to incoherent backscatter heterodyne lidar returns,�?? J. Opt. Soc. Am. 71, 687-691 (1981).
    [CrossRef]
  3. J. Martin, �??Simulation of wave propagation in random media: theory and applications,�?? in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, and V. Zavorotny, eds., SPIE, Washington (1993).
  4. A. Belmonte, �??Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance,�?? Appl. Opt. 39, 5426-5445 (2000).
    [CrossRef]
  5. A. Belmonte, "Analyzing the efficiency of a practical heterodyne lidar in the turbulent atmosphere: telescope parameters," Opt. Express 11, 2041-2046 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2041">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2041</a>
    [CrossRef] [PubMed]
  6. A. Belmonte, "Angular misalignment contribution to practical heterodyne lidars in the turbulent atmosphere," Opt. Express 11, 2525-2531 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2525">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2525</a>.
    [CrossRef] [PubMed]
  7. L. C. Andrews, "An analytical model for the refractive-index power spectrum and its application to optical scintillation in the atmosphere", J. Mod. Opt. 39, 1849-1853, 1992.
    [CrossRef]
  8. B. J. Rye, �??Antenna parameters for incoherent backscatter heterodyne lidar,�?? Appl. Opt. 18, 1390-1398 (1979).
    [CrossRef] [PubMed]
  9. R. G. Frehlich and M. J. Kavaya, �??Coherent laser radar performance for general atmospheric refractive turbulence,�?? Appl. Opt. 30, 5325-5352 (1991).
    [CrossRef] [PubMed]
  10. R. M. Measures, Laser Remote Sensing. Fundamentals and Applications (Wiley-Interscience, New York, 1984).
  11. J. W. Strohbehn, �??Modern theories in the propagation of optical waves in a turbulent medium,�?? in Laser Beam Propagation in the Atmosphere, ed. J. W. Strohbehn (Springer Verlag, Berlin, 1978).
    [CrossRef]
  12. J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, and F. S. Henyey, �??Solution for the fourth moment of waves propagating in random media,�?? Radio Sci. 21, 929-948 (1986).
    [CrossRef]
  13. M. I. Charnotskii, �??Asymptotic analysis of finite-beam scintillations in a turbulent medium,�?? Waves in Random Media 4, 243-273 (1994).
    [CrossRef]
  14. J. H. Churnside , Aperture averaging of optical scintillation in the turbulent atmosphere , Appl. Opt. 30, 1982-1994 ( 1991).
    [CrossRef] [PubMed]
  15. A. M. Prokhorov, F. V. Bunkin, K. S. Gochelashvily, and V. I. Shishov, �??Laser irradiance propagation in turbulent media,�?? Proc. IEEE 63, 790-811 (1975).
    [CrossRef]
  16. R. L. Fante, �??Electromagnetic beam propagation in turbulent media,�?? Proc. IEEE 63, 1669-1692 (1975).
    [CrossRef]
  17. L. L. Gurdev, T. N. Dreischuh, �??An heuristic view on the signal-to-noise ratio at coherent heterodyne detection of aerosol lidar returns formed through turbulent atmosphere�??, in 12th International School on Quantum Electronics: Laser Physics and Applications, P. A. Atanasov, A. A. Serafetinides, and I. N. Kolev, eds., Proc. SPIE 5226, 310-314 (2003).

Appl. Opt.

J. Mod. Opt.

L. C. Andrews, "An analytical model for the refractive-index power spectrum and its application to optical scintillation in the atmosphere", J. Mod. Opt. 39, 1849-1853, 1992.
[CrossRef]

J. Opt. Soc. Am.

Laser Beam Propagation in the Atmosphere

J. W. Strohbehn, �??Modern theories in the propagation of optical waves in a turbulent medium,�?? in Laser Beam Propagation in the Atmosphere, ed. J. W. Strohbehn (Springer Verlag, Berlin, 1978).
[CrossRef]

Opt. Express

Proc. IEEE

A. M. Prokhorov, F. V. Bunkin, K. S. Gochelashvily, and V. I. Shishov, �??Laser irradiance propagation in turbulent media,�?? Proc. IEEE 63, 790-811 (1975).
[CrossRef]

R. L. Fante, �??Electromagnetic beam propagation in turbulent media,�?? Proc. IEEE 63, 1669-1692 (1975).
[CrossRef]

Proc. SPIE

L. L. Gurdev, T. N. Dreischuh, �??An heuristic view on the signal-to-noise ratio at coherent heterodyne detection of aerosol lidar returns formed through turbulent atmosphere�??, in 12th International School on Quantum Electronics: Laser Physics and Applications, P. A. Atanasov, A. A. Serafetinides, and I. N. Kolev, eds., Proc. SPIE 5226, 310-314 (2003).

Radio Sci.

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, and F. S. Henyey, �??Solution for the fourth moment of waves propagating in random media,�?? Radio Sci. 21, 929-948 (1986).
[CrossRef]

SPIE

J. Martin, �??Simulation of wave propagation in random media: theory and applications,�?? in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, and V. Zavorotny, eds., SPIE, Washington (1993).

Waves in Random Media

M. I. Charnotskii, �??Asymptotic analysis of finite-beam scintillations in a turbulent medium,�?? Waves in Random Media 4, 243-273 (1994).
[CrossRef]

Other

R. M. Measures, Laser Remote Sensing. Fundamentals and Applications (Wiley-Interscience, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Statistics of the coherent power turbulent fluctuations as a function of range R and different moderate-to-strong refractive turbulence Cn2 daytime values for a 2-µm wavelength, 16-cm aperture, monostatic lidar system. Along with the coherent power variance, the covariance function is shown for different range resolutions ΔR. The dashed line and y-axis labeling on the right corresponds to the mean coherent power.

Fig. 2.
Fig. 2.

Similar to Fig. 1 but for a 10-µm monostatic lidar. Again, along with the coherent power variance, the covariance function is shown for different range resolutions ΔR. The dashed line and y-axis labeling on the right corresponds to the mean coherent power.

Fig. 3.
Fig. 3.

Variance and covariance for different range resolutions ΔR of the coherent power turbulent fluctuations as a function of range R for a 2-µm bistatic lidar system. The lidar system parameters and levels of refractive turbulence are similar to those in Fig. 1 for the monostatic system. The dashed line and y-axis labeling on the right corresponds to the mean coherent power.

Fig. 4.
Fig. 4.

Similar to Fig.3 but for a 10-µm monostatic lidar. The dashed line and y-axis labeling on the right corresponds to the mean coherent power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P ( R , t ) = C exp [ 2 R α ( R ) ] β ( R ) λ 2 j T ( p , R , t ) j BPLO ( p , R ) d p ,
δ P ( R ) = P on ( R Δ R 2 ) P off ( R + Δ R 2 ) P on ( R + Δ R 2 ) P off ( R Δ R 2 )
C P ( R 1 , R 2 ) = [ j T ( p , R 1 , t ) j BPLO ( p , R 1 ) d p ] [ j T ( p , R 2 , t ) j BPLO ( p , R 2 ) d p ] [ j T ( p , R 1 , t ) j BPLO ( p , R 1 ) d p ] [ j T ( p , R 2 , t ) j BPLO ( p , R 2 ) d p ] 1

Metrics