Abstract

A novel all-optical switching structure based on a photonic crystal directional coupler is proposed and analyzed. Efficient optical switching is achieved by modifying the refractive index of the coupling region between the coupled waveguides by means of an optical control signal that is confined in the central region. Small length (around 1.1 mm) and low optical power consumption (over 1.5 W) are the main features estimated for this switching structure.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. U. Kang, G. I. Stegeman, and J. S. Aitchison, �??All-optical multiplexing of femtosecond signals using an AlGaAs nonlinear directional coupler,�?? Electron. Lett. 31, 118-119, (1995).
    [CrossRef]
  2. J.S. Aitchison, A. Villeneuve, G.I. Stegeman, �??All-optical switching in two cascaded nonlinear directional couplers,�?? Opt. Lett. 20, 698-700 (1995).
    [CrossRef] [PubMed]
  3. S. R. Friberg, A. M Weiner, Y. Silberberg, B. G. Sfez, and P. S. Smith, �??Femtosecond switching in a dualcore- fiber nonlinear coupler,�?? Opt. Lett. 13, 904-906 (1988).
    [CrossRef] [PubMed]
  4. M. Solja�?i�?, S. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. Joannopoulos, �??Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,�?? J. Opt. Soc. Am. B 19, 2052-2059 (2002)
    [CrossRef]
  5. A. Yariv, Y. Xu, R. K. Lee, A. Scherer, �??Coupled-resonator optical waveguide: a proposal and analysis,�?? Opt. Lett. 24, 711-713 (1999).
    [CrossRef]
  6. A. Martinez, F. Cuesta, and J. Martí, �??Ultrashort 2-D photonic crystal directional couplers,�?? IEEE Photon. Technol. Lett. 15, 694-696, (2003).
    [CrossRef]
  7. Jiaming Jin, The finite Element Method in Electromagnetics, (John Wiley & Sons, inc., 1993).
  8. Akira Niiyama, Masanori Koshiba, and Yasuhide Tsuji, �??An Efficient Scalar Finite Element Formulation for Nonlinear Optical Channel Waveguides,�?? J. Ligthwave Technol. 13, 1919-1925 (1995).
    [CrossRef]
  9. V. Lousse, J.P. Vigneron, �??Self-consistent photonic band structure of dielectric superlattices containing nonlinear optical materials,�?? Phys. Rev. E 63, 027602 (2001).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear fiber optics, (Academic Press, 3rd edition, 2001).

Electron. Lett. (1)

J. U. Kang, G. I. Stegeman, and J. S. Aitchison, �??All-optical multiplexing of femtosecond signals using an AlGaAs nonlinear directional coupler,�?? Electron. Lett. 31, 118-119, (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Martinez, F. Cuesta, and J. Martí, �??Ultrashort 2-D photonic crystal directional couplers,�?? IEEE Photon. Technol. Lett. 15, 694-696, (2003).
[CrossRef]

J. Ligthwave Technol. (1)

Akira Niiyama, Masanori Koshiba, and Yasuhide Tsuji, �??An Efficient Scalar Finite Element Formulation for Nonlinear Optical Channel Waveguides,�?? J. Ligthwave Technol. 13, 1919-1925 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Phys. Rev. E (1)

V. Lousse, J.P. Vigneron, �??Self-consistent photonic band structure of dielectric superlattices containing nonlinear optical materials,�?? Phys. Rev. E 63, 027602 (2001).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear fiber optics, (Academic Press, 3rd edition, 2001).

Jiaming Jin, The finite Element Method in Electromagnetics, (John Wiley & Sons, inc., 1993).

Supplementary Material (2)

» Media 1: AVI (1385 KB)     
» Media 2: AVI (1623 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the PhC directional coupler used as switching structure.

Fig. 2.
Fig. 2.

Band diagram of the PhC coupler: control signal (solid curve), coupler even mode (dashed curve) and odd coupler mode (dotted curve). Insets: transverse pattern of the modulus of the electric field amplitudes.

Fig. 3.
Fig. 3.

FDTD electric field distribution inside the coupler f=0.3281 [a/λ], (a) in the linear regime (1.3 MB movie) and (b) in the non-linear regime (1.6 MB movie); (c) control signal used to tune κ, f=0.285 [a/λ].

Fig. 4.
Fig. 4.

(a) Coupler length L and (b) maximum switched channel bandwidth as function of the operational frequency of the switch for a peak power of 1.56 W in the control signal. The bandwidth is calculated as the FWHM.

Fig. 5.
Fig. 5.

Group velocity of the control signal as a function of frequency. It can be seen that the control signal may have a large spectral bandwidth calculated in this example for a lattice period a=511.5 µm.

Fig. 6.
Fig. 6.

Dependence of the switch length L as a function of the peak power of the control signal at the normalized operational frequency of 0.3281 [a/λ].

Metrics