Abstract

An analysis of leaky modes in real microstructured optical fibres fabricated specifically for photonic band gap guidance in an air core has been used to identify alternative guiding mechanisms. The supported leaky modes exhibit properties closely matching a simple hollow waveguide, uninfluenced by the surrounding microstructure. The analysis gives a quantitative determination of the wavelength dependent loss of these modes and illustrates a mechanism not photonic band gap in origin by which colouration can be observed in such fibres. These findings are demonstrated experimentally.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T.A. Birks, J.C. Knight, P.St.J. Russell, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-3(1997).
    [CrossRef] [PubMed]
  2. K.M. Kiang, K. Frampton, T.M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D.J. Richardson, H.N. Rutt, �??Extruded singlemode non-silica glass holey optical fibres,�?? Electron. Lett. 38, 546-7 (2002).
    [CrossRef]
  3. M.A. van Eijkelenborg, M.C.J. Large, A. Argyros, J. Zagari, S. Manos, N.A. Issa, I. Bassett, S. Fleming, R.C. McPhedran, C.M. de Sterke, N.A.P. Nicorovici, �??Microstructured polymer optical fibre,�?? Opt. Express 9, 319-27(2001), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-7-319>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-7-319</a>
    [CrossRef] [PubMed]
  4. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts, D.C. Allan, �??Single mode photonic band gap guidance of light in air,�?? Science 285, 1537-9 (1999)
    [CrossRef] [PubMed]
  5. J.A.West, J.C. Fajardo, M.T. Gallagher, K.W. Koch, N.F. Borrelli, D.C. Allan, �??Demonstration of an IR-optimized air-core photonic band-gap fiber,�?? Proceedings of the 26th European Conference on Optical Communication ECOC, Berlin, Germany, 4, 41-2 (2000)
  6. M.A. van Eijkelenborg, M.C.J. Large, A. Argyros, I. Bassett, J. Zagari, �??Photonic band gap guiding in microstructured polymer optical fibres,�?? The International Quantum Electronics Conference, IQEC June, Moscow, Russia, paper QThH3 (2002)
  7. T.M. Monro, W. Belardi, K. Furusawa, J.C. Baggett, N.G.R. Broderick, D.J. Richardson, �??Sensing with microstructured optical fibres,�?? Meas. Sci Technol. 12, 854-8 (2001).
    [CrossRef]
  8. F. Benabid, J.C. Knight, G. Antonopoulos, P.St.J. Russell, �??Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,�?? Science 298, 375-99 (2002).
    [CrossRef]
  9. B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos and Y. Fink, �??Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,�?? Nature 420, 650-3 (2002).
    [CrossRef] [PubMed]
  10. F. Benabid, J.C. Knight, P.St.J. Russell, �??Particle levitation and guidance in hollow-core photonic crystal fiber,�?? Opt. Express 10, 1195-203 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1195">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1195</a>
    [CrossRef] [PubMed]
  11. T.P. White, R.C. McPhedran, C.M. de Sterke, N.M. Lichinitser, B.J. Eggleton, �??Resonance and scattering in microstructured optical fibres,�?? Opt. Lett. 27, 1977-9 (2002).
    [CrossRef]
  12. B.J. Mangan, J. Arriaga, T.A. Birks, J.C. Knight, P.St.J. Russell, �??Fundamental-mode cutoff in a photonic crystal fiber with a depressed-index core,�?? Opt. Lett 26, 1469-71 (2001).
    [CrossRef]
  13. M.A. van Eijkelenborg, J. Canning, T. Ryan, K. Lyytikainen, �??Bending-induced colouring in a photonic crystal fibre,�?? Opt. Express 7, 88-94 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-88">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-88</a>
    [CrossRef] [PubMed]
  14. E.A.J. Marcatili, R.A. Schmeltzer, �??Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,�?? Bell Syst. Tech. J. 43, 1783-809 (1964).
  15. N. Venkataraman, M.T. Gallagher, C. Smith, D. Mller, J.A. West, K.W. Koch, J.C. Fajardo, S. Park, �??Low loss (13dB/km) air core photonic band gap fibre,�?? European Conference on Optical Communication, post-deadline (2002).
  16. J.A. West, D.C. Allan, �??Effect of disorder on photonic band-gap fibers,�?? European Conference on Optical Communication, paper L-5719-MAN (2002).
  17. A.W. Snyder, J.D. Love, Optical waveguide theory, (Chapman and Hall, New York, 1983), 436-41.
  18. N.A. Issa, L. Poladian, �??Vector wave expansion method for leaky modes of microstructured optical fibres,�?? J. Lightwave Tech., in press April issue (2003).
    [CrossRef]

Bell Syst. Tech. J.

E.A.J. Marcatili, R.A. Schmeltzer, �??Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,�?? Bell Syst. Tech. J. 43, 1783-809 (1964).

Electron. Lett.

K.M. Kiang, K. Frampton, T.M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D.J. Richardson, H.N. Rutt, �??Extruded singlemode non-silica glass holey optical fibres,�?? Electron. Lett. 38, 546-7 (2002).
[CrossRef]

J. Lightwave Tech.

N.A. Issa, L. Poladian, �??Vector wave expansion method for leaky modes of microstructured optical fibres,�?? J. Lightwave Tech., in press April issue (2003).
[CrossRef]

Meas. Sci Technol.

T.M. Monro, W. Belardi, K. Furusawa, J.C. Baggett, N.G.R. Broderick, D.J. Richardson, �??Sensing with microstructured optical fibres,�?? Meas. Sci Technol. 12, 854-8 (2001).
[CrossRef]

Nature

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos and Y. Fink, �??Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,�?? Nature 420, 650-3 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett

B.J. Mangan, J. Arriaga, T.A. Birks, J.C. Knight, P.St.J. Russell, �??Fundamental-mode cutoff in a photonic crystal fiber with a depressed-index core,�?? Opt. Lett 26, 1469-71 (2001).
[CrossRef]

Opt. Lett.

Science

F. Benabid, J.C. Knight, G. Antonopoulos, P.St.J. Russell, �??Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,�?? Science 298, 375-99 (2002).
[CrossRef]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts, D.C. Allan, �??Single mode photonic band gap guidance of light in air,�?? Science 285, 1537-9 (1999)
[CrossRef] [PubMed]

Other

J.A.West, J.C. Fajardo, M.T. Gallagher, K.W. Koch, N.F. Borrelli, D.C. Allan, �??Demonstration of an IR-optimized air-core photonic band-gap fiber,�?? Proceedings of the 26th European Conference on Optical Communication ECOC, Berlin, Germany, 4, 41-2 (2000)

M.A. van Eijkelenborg, M.C.J. Large, A. Argyros, I. Bassett, J. Zagari, �??Photonic band gap guiding in microstructured polymer optical fibres,�?? The International Quantum Electronics Conference, IQEC June, Moscow, Russia, paper QThH3 (2002)

N. Venkataraman, M.T. Gallagher, C. Smith, D. Mller, J.A. West, K.W. Koch, J.C. Fajardo, S. Park, �??Low loss (13dB/km) air core photonic band gap fibre,�?? European Conference on Optical Communication, post-deadline (2002).

J.A. West, D.C. Allan, �??Effect of disorder on photonic band-gap fibers,�?? European Conference on Optical Communication, paper L-5719-MAN (2002).

A.W. Snyder, J.D. Love, Optical waveguide theory, (Chapman and Hall, New York, 1983), 436-41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Two polymer (PMMA) fibres. (a) PBG MOF with a 17.5µm core diameter, hole diameters of 4.3µm±7% and hole spacings of 6µm±5%. (b) Hollow waveguide with a 22µm core diameter. The three pictures next to the fibres show the length dependent output when diffuse white light is launched into the core.

Fig. 2.
Fig. 2.

A comparison of the measured transmission spectrum of two 13mm long pieces of air core MOF with the expected transmission for a hollow waveguide with equal diameter. The core diameters are (a) 17.5µm and (b) 48.0µm. The spectra have been normalised to a spectrum of the light source.

Fig. 3.
Fig. 3.

Numerical propagation characteristics for the MOF shown in the inset - a 6-fold symmetric idealization of the fibre in Fig. 1 (a), including the measured ellipticity of the first ring of holes. The intensity profile of the fundamental (HE11 like) leaky mode solution is superimposed to demonstrate the similarity with experimental observation. (a) The real part of n eff and (b) confinement loss are compared with the fundamental mode solution of the hollow waveguide model.

Fig. 4.
Fig. 4.

Transmission characteristics for hollow waveguides. (a) Mode dependent confinement loss of the 13 least lossy leaky modes and (b) overall transmission via all leaky modes for various fibre lengths. A colour bar indicates the visible spectrum range for the core diameter (D=17.5µm) of the MOF in Fig. 1 (a).

Metrics