A. Shishido, Ivan B. Diviliansky, I. C. Khoo, and T. S. Mayer, “Direct Fabrication of Two-Dimensional Titania Arrays Using Interference Photolithography,” Appl. Phys. Lett. 79, 3332–3334 (2001).

[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173

[CrossRef]
[PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).

[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of a microfiber bundle by interference of three noncoplanar beams,” Opt. Lett. 26, 1858–1860 (2001).

[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

X. Zhang, Z.Q. Zhang, L. M. Li, C. Jin, D. Zhang, B. Man, and B. Cheng, “Enlarging a photonic band gap by using insertion,” Phys. Rev. B 61, 1892–1897 (2000).

[CrossRef]

X. H. Wang, B. Y. Gu, Z. Y. Li, and G. Z. Yang, “Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices,” Phys. Rev. B 60, 11417–11421 (1999).

[CrossRef]

A. J. Ward and J. B. Pendry, “Calculating photonic Green’s functions using a nonorthogonal finite-difference time-domain method,” Phys. Rev. B 58, 7252–7259 (1998).

[CrossRef]

B. D’Urso, O. Painter, J.D. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal Microcavities,” J. Opt. Soc. Am. B. 15, 1155–1159 (1998).

[CrossRef]

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).

[CrossRef]

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).

[CrossRef]

C. M. Anderson and K. P. Giapis, “Symmetry reduction in group 4 mm photonic crystals”, Phys. Rev. B 56, 7313–7320 (1997).

[CrossRef]

C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett. 77, 2949–2952 (1996).

[CrossRef]
[PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).

[CrossRef]
[PubMed]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996).

[CrossRef]

R. Padjen, J. M. Gerard, and J. Y. Marzin, “Analysis of the filling pattern dependence of the photonic bandgap for two-dimensional systems,” J. Mod. Opt. 41, 295–310 (1994).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Opt. Comm. 80, 199–204 (1991).

[CrossRef]

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).

[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]
[PubMed]

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

[CrossRef]
[PubMed]

C. M. Anderson and K. P. Giapis, “Symmetry reduction in group 4 mm photonic crystals”, Phys. Rev. B 56, 7313–7320 (1997).

[CrossRef]

C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett. 77, 2949–2952 (1996).

[CrossRef]
[PubMed]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).

[CrossRef]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996).

[CrossRef]

Richard Brent, Algorithms for minimization without derivatives (Prentice-Hall, 1973; republished by Dover in paperback, 2002).

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices,” Opt. Lett. 28, 453–455 (2003).

[CrossRef]
[PubMed]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).

[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of a microfiber bundle by interference of three noncoplanar beams,” Opt. Lett. 26, 1858–1860 (2001).

[CrossRef]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996).

[CrossRef]

X. Zhang, Z.Q. Zhang, L. M. Li, C. Jin, D. Zhang, B. Man, and B. Cheng, “Enlarging a photonic band gap by using insertion,” Phys. Rev. B 61, 1892–1897 (2000).

[CrossRef]

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).

[CrossRef]

B. D’Urso, O. Painter, J.D. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal Microcavities,” J. Opt. Soc. Am. B. 15, 1155–1159 (1998).

[CrossRef]

A. Shishido, Ivan B. Diviliansky, I. C. Khoo, and T. S. Mayer, “Direct Fabrication of Two-Dimensional Titania Arrays Using Interference Photolithography,” Appl. Phys. Lett. 79, 3332–3334 (2001).

[CrossRef]

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).

[CrossRef]

R. Padjen, J. M. Gerard, and J. Y. Marzin, “Analysis of the filling pattern dependence of the photonic bandgap for two-dimensional systems,” J. Mod. Opt. 41, 295–310 (1994).

[CrossRef]

C. M. Anderson and K. P. Giapis, “Symmetry reduction in group 4 mm photonic crystals”, Phys. Rev. B 56, 7313–7320 (1997).

[CrossRef]

C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett. 77, 2949–2952 (1996).

[CrossRef]
[PubMed]

X. H. Wang, B. Y. Gu, Z. Y. Li, and G. Z. Yang, “Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices,” Phys. Rev. B 60, 11417–11421 (1999).

[CrossRef]

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).

[CrossRef]

X. Zhang, Z.Q. Zhang, L. M. Li, C. Jin, D. Zhang, B. Man, and B. Cheng, “Enlarging a photonic band gap by using insertion,” Phys. Rev. B 61, 1892–1897 (2000).

[CrossRef]

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

[CrossRef]
[PubMed]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996).

[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).

[CrossRef]

A. Shishido, Ivan B. Diviliansky, I. C. Khoo, and T. S. Mayer, “Direct Fabrication of Two-Dimensional Titania Arrays Using Interference Photolithography,” Appl. Phys. Lett. 79, 3332–3334 (2001).

[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).

[CrossRef]

X. Zhang, Z.Q. Zhang, L. M. Li, C. Jin, D. Zhang, B. Man, and B. Cheng, “Enlarging a photonic band gap by using insertion,” Phys. Rev. B 61, 1892–1897 (2000).

[CrossRef]

X. H. Wang, B. Y. Gu, Z. Y. Li, and G. Z. Yang, “Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices,” Phys. Rev. B 60, 11417–11421 (1999).

[CrossRef]

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).

[CrossRef]

X. Zhang, Z.Q. Zhang, L. M. Li, C. Jin, D. Zhang, B. Man, and B. Cheng, “Enlarging a photonic band gap by using insertion,” Phys. Rev. B 61, 1892–1897 (2000).

[CrossRef]

M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Opt. Comm. 80, 199–204 (1991).

[CrossRef]

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).

[CrossRef]

R. Padjen, J. M. Gerard, and J. Y. Marzin, “Analysis of the filling pattern dependence of the photonic bandgap for two-dimensional systems,” J. Mod. Opt. 41, 295–310 (1994).

[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).

[CrossRef]

A. Shishido, Ivan B. Diviliansky, I. C. Khoo, and T. S. Mayer, “Direct Fabrication of Two-Dimensional Titania Arrays Using Interference Photolithography,” Appl. Phys. Lett. 79, 3332–3334 (2001).

[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).

[CrossRef]

B. D’Urso, O. Painter, J.D. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal Microcavities,” J. Opt. Soc. Am. B. 15, 1155–1159 (1998).

[CrossRef]

R. Padjen, J. M. Gerard, and J. Y. Marzin, “Analysis of the filling pattern dependence of the photonic bandgap for two-dimensional systems,” J. Mod. Opt. 41, 295–310 (1994).

[CrossRef]

B. D’Urso, O. Painter, J.D. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal Microcavities,” J. Opt. Soc. Am. B. 15, 1155–1159 (1998).

[CrossRef]

A. J. Ward and J. B. Pendry, “Calculating photonic Green’s functions using a nonorthogonal finite-difference time-domain method,” Phys. Rev. B 58, 7252–7259 (1998).

[CrossRef]

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).

[CrossRef]

M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Opt. Comm. 80, 199–204 (1991).

[CrossRef]

B. D’Urso, O. Painter, J.D. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal Microcavities,” J. Opt. Soc. Am. B. 15, 1155–1159 (1998).

[CrossRef]

M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Opt. Comm. 80, 199–204 (1991).

[CrossRef]

M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Opt. Comm. 80, 199–204 (1991).

[CrossRef]

A. Shishido, Ivan B. Diviliansky, I. C. Khoo, and T. S. Mayer, “Direct Fabrication of Two-Dimensional Titania Arrays Using Interference Photolithography,” Appl. Phys. Lett. 79, 3332–3334 (2001).

[CrossRef]

B. D’Urso, O. Painter, J.D. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal Microcavities,” J. Opt. Soc. Am. B. 15, 1155–1159 (1998).

[CrossRef]

X. H. Wang, B. Y. Gu, Z. Y. Li, and G. Z. Yang, “Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices,” Phys. Rev. B 60, 11417–11421 (1999).

[CrossRef]

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices,” Opt. Lett. 28, 453–455 (2003).

[CrossRef]
[PubMed]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).

[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of a microfiber bundle by interference of three noncoplanar beams,” Opt. Lett. 26, 1858–1860 (2001).

[CrossRef]

A. J. Ward and J. B. Pendry, “Calculating photonic Green’s functions using a nonorthogonal finite-difference time-domain method,” Phys. Rev. B 58, 7252–7259 (1998).

[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]
[PubMed]

X. H. Wang, B. Y. Gu, Z. Y. Li, and G. Z. Yang, “Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices,” Phys. Rev. B 60, 11417–11421 (1999).

[CrossRef]

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).

[CrossRef]

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices,” Opt. Lett. 28, 453–455 (2003).

[CrossRef]
[PubMed]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).

[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of a microfiber bundle by interference of three noncoplanar beams,” Opt. Lett. 26, 1858–1860 (2001).

[CrossRef]

B. D’Urso, O. Painter, J.D. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal Microcavities,” J. Opt. Soc. Am. B. 15, 1155–1159 (1998).

[CrossRef]

X. Zhang, Z.Q. Zhang, L. M. Li, C. Jin, D. Zhang, B. Man, and B. Cheng, “Enlarging a photonic band gap by using insertion,” Phys. Rev. B 61, 1892–1897 (2000).

[CrossRef]

X. Zhang, Z.Q. Zhang, L. M. Li, C. Jin, D. Zhang, B. Man, and B. Cheng, “Enlarging a photonic band gap by using insertion,” Phys. Rev. B 61, 1892–1897 (2000).

[CrossRef]

X. Zhang, Z.Q. Zhang, L. M. Li, C. Jin, D. Zhang, B. Man, and B. Cheng, “Enlarging a photonic band gap by using insertion,” Phys. Rev. B 61, 1892–1897 (2000).

[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).

[CrossRef]

A. Shishido, Ivan B. Diviliansky, I. C. Khoo, and T. S. Mayer, “Direct Fabrication of Two-Dimensional Titania Arrays Using Interference Photolithography,” Appl. Phys. Lett. 79, 3332–3334 (2001).

[CrossRef]

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

R. Padjen, J. M. Gerard, and J. Y. Marzin, “Analysis of the filling pattern dependence of the photonic bandgap for two-dimensional systems,” J. Mod. Opt. 41, 295–310 (1994).

[CrossRef]

B. D’Urso, O. Painter, J.D. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal Microcavities,” J. Opt. Soc. Am. B. 15, 1155–1159 (1998).

[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Opt. Comm. 80, 199–204 (1991).

[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).

[CrossRef]
[PubMed]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of a microfiber bundle by interference of three noncoplanar beams,” Opt. Lett. 26, 1858–1860 (2001).

[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).

[CrossRef]

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices,” Opt. Lett. 28, 453–455 (2003).

[CrossRef]
[PubMed]

X. H. Wang, B. Y. Gu, Z. Y. Li, and G. Z. Yang, “Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices,” Phys. Rev. B 60, 11417–11421 (1999).

[CrossRef]

C. M. Anderson and K. P. Giapis, “Symmetry reduction in group 4 mm photonic crystals”, Phys. Rev. B 56, 7313–7320 (1997).

[CrossRef]

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).

[CrossRef]

X. Zhang, Z.Q. Zhang, L. M. Li, C. Jin, D. Zhang, B. Man, and B. Cheng, “Enlarging a photonic band gap by using insertion,” Phys. Rev. B 61, 1892–1897 (2000).

[CrossRef]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996).

[CrossRef]

A. J. Ward and J. B. Pendry, “Calculating photonic Green’s functions using a nonorthogonal finite-difference time-domain method,” Phys. Rev. B 58, 7252–7259 (1998).

[CrossRef]

C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett. 77, 2949–2952 (1996).

[CrossRef]
[PubMed]

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).

[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]
[PubMed]

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

[CrossRef]
[PubMed]

Richard Brent, Algorithms for minimization without derivatives (Prentice-Hall, 1973; republished by Dover in paperback, 2002).