Abstract

We produce microjoule energy shaped mid infrared (MIR) pulses in an optical parametric amplification (OPA) process by imposing the phase and amplitude profile of an arbitrarily shaped pump pulse onto the idler pulse. Using phase locked pulses created using this technique, we measure for the first time, complex optical free induction decay (OFID) of the vibrational coherence of a C-H stretching mode.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  2. J. X. Tull, M. A. Dugan, and W. S. Warren, �??High-resolution, ultrafast laser pulse shaping and its applications,�?? Adv. Magn. Opt. Res. 20, 1-65 (1997).
    [CrossRef]
  3. F. Eickemeyer, R. A. Kaindl, M.Woerner, T. Elsaesser, and A. M.Weiner, �??Controlled shaping of ultrafast electric field transients in the mid-infrared spectral range,�?? Opt. Lett. 25, 1472-1474 (2000).
    [CrossRef]
  4. N. Belabas, J. P. Likforman, L. Canioni, B. Bousquet, and M. Joffre, �??Coherent broadband pulse shaping in the mid infrared,�?? Opt. Lett. 26, 743-745 (2001).
    [CrossRef]
  5. T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, �??Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared,�?? Opt. Lett. 27, 131-133 (2002).
    [CrossRef]
  6. H.-S. Tan, E. Schreiber, and W.S. Warren, �??High resolution indirect pulse shaping by parametric transfer,�?? Opt. Lett. 27, 439-441 (2002)
    [CrossRef]
  7. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of femtosecond laser pulses (American Institute of Physics, New York, 1992).
  8. T. Wilhelm, J. Piel, and E. Riedle, �??Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,�?? Opt. Lett. 22, 1494-1496 (1997).
    [CrossRef]
  9. G. Cerullo, M. Nisoli, and S. De Silvestri, �??Generation of 11 fs pulses tunable across the visible by optical parametric amplification�?? Appl. Phys. Lett. 71, 3616-3618 (1997).
    [CrossRef]
  10. A. Shirakawa, T. Kobayashi, �??Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm-1 bandwidth�?? Appl. Phys. Lett. 72 147-149 (1998).
    [CrossRef]
  11. H.-S. Tan, E. Schreiber, and W.S. Warren, �??Infrared pulse shaping by parametric transfer,�?? in Ultrafast Phenomena XIII, M. M. Murnane, N. F. Scherer, R. J. Dwayne Miller, and A. M. Weiner, eds., (in press).
  12. R. Trebino, K. W. Delong, D. N. Fittinfhoff, J. N. Sweetser, M. A. Krumb¨ugel, B. A. Richman and D. J. Kane, �??Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,�?? Rev. Sci. Instrum. 68, 3277-3295 (1997).
    [CrossRef]
  13. Electro-Optical Products Corporation, <a href="http://www.eopc.com">http://www.eopc.com</a>, Fresh Meadows, NY.
  14. Cambridge Research and Instrumentation, Inc. <a href="http://www.cri-inc.com">http://www.cri-inc.com</a>, Boston, MA.
  15. N. H. Damrauer, C. Dietl, G. Krampert, S. H. Lee, K. H. Jung, and G. Gerber, �??Control of bond-selective photochemistry in CH2BrCl using adaptive femtosecond pulse shaping,�?? Eur. Phys. J. D 20, 71-76 (2002).
    [CrossRef]
  16. F. Eickemeyer,M.Woerner, A.M.Weiner, T. Elsaesser, R. Hey, and K. H. Ploog, �??Coherent nonlinear propagation of ultrafast electric field transients through intersubband resonances,�?? Appl. Phys. Lett. 79, 165-167 (2001).
    [CrossRef]
  17. Q. Wu, and Zhang XC, �??Free-space electro-optics sampling of mid-infrared pulses,�?? Appl. Phys. Lett. 71, 1285- 1286 (1997).
    [CrossRef]
  18. W. S.Warren, and A. H. Zewail, �??Optical analogs of NMR phase coherent multiple pulse spectroscopy,�?? J. Chem. Phys. 75, 5956-5958 (1981).
    [CrossRef]
  19. F. Spano, M. Haner, andW. S.Warren, �??Spectroscopic demonstration of picosecond, phase-shifted laser multiplepulse sequences,�?? Chem. Phys. Lett. 135, 97-102 (1987).
    [CrossRef]
  20. J. T. Fourkas, W. L. Wilson, G. W¨ackerle, A. E. Frost, and M. D. Fayer, �??Picosecond time-scale phase-related optical pulses: measurement of sodium optical coherence decay by observation of incoherent fluorescence,�?? J. Chem. Phys. 6, 1905-1910 (1989).
  21. S. Mukamel, Principles of nonlinear optical spectroscopy (Oxford University Press, New York, 1995).
  22. N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice �??Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses,�?? J. Chem. Phys. 95, 1487-1511 (1991).
    [CrossRef]
  23. D. Keusters, H.-S. Tan, and W. S. Warren, �??Role of pulse phase and direction in two-dimensional optical spectroscopy,�?? J. Phys. Chem. B 103, 10369-10380 (1999).
    [CrossRef]

Adv. Magn. Opt. Res.

J. X. Tull, M. A. Dugan, and W. S. Warren, �??High-resolution, ultrafast laser pulse shaping and its applications,�?? Adv. Magn. Opt. Res. 20, 1-65 (1997).
[CrossRef]

Appl. Phys. Lett.

G. Cerullo, M. Nisoli, and S. De Silvestri, �??Generation of 11 fs pulses tunable across the visible by optical parametric amplification�?? Appl. Phys. Lett. 71, 3616-3618 (1997).
[CrossRef]

A. Shirakawa, T. Kobayashi, �??Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm-1 bandwidth�?? Appl. Phys. Lett. 72 147-149 (1998).
[CrossRef]

F. Eickemeyer,M.Woerner, A.M.Weiner, T. Elsaesser, R. Hey, and K. H. Ploog, �??Coherent nonlinear propagation of ultrafast electric field transients through intersubband resonances,�?? Appl. Phys. Lett. 79, 165-167 (2001).
[CrossRef]

Q. Wu, and Zhang XC, �??Free-space electro-optics sampling of mid-infrared pulses,�?? Appl. Phys. Lett. 71, 1285- 1286 (1997).
[CrossRef]

Chem. Phys. Lett.

F. Spano, M. Haner, andW. S.Warren, �??Spectroscopic demonstration of picosecond, phase-shifted laser multiplepulse sequences,�?? Chem. Phys. Lett. 135, 97-102 (1987).
[CrossRef]

Eur. Phys. J. D

N. H. Damrauer, C. Dietl, G. Krampert, S. H. Lee, K. H. Jung, and G. Gerber, �??Control of bond-selective photochemistry in CH2BrCl using adaptive femtosecond pulse shaping,�?? Eur. Phys. J. D 20, 71-76 (2002).
[CrossRef]

J. Chem. Phys.

J. T. Fourkas, W. L. Wilson, G. W¨ackerle, A. E. Frost, and M. D. Fayer, �??Picosecond time-scale phase-related optical pulses: measurement of sodium optical coherence decay by observation of incoherent fluorescence,�?? J. Chem. Phys. 6, 1905-1910 (1989).

W. S.Warren, and A. H. Zewail, �??Optical analogs of NMR phase coherent multiple pulse spectroscopy,�?? J. Chem. Phys. 75, 5956-5958 (1981).
[CrossRef]

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice �??Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses,�?? J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

J. Phys. Chem. B

D. Keusters, H.-S. Tan, and W. S. Warren, �??Role of pulse phase and direction in two-dimensional optical spectroscopy,�?? J. Phys. Chem. B 103, 10369-10380 (1999).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

R. Trebino, K. W. Delong, D. N. Fittinfhoff, J. N. Sweetser, M. A. Krumb¨ugel, B. A. Richman and D. J. Kane, �??Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,�?? Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Other

Electro-Optical Products Corporation, <a href="http://www.eopc.com">http://www.eopc.com</a>, Fresh Meadows, NY.

Cambridge Research and Instrumentation, Inc. <a href="http://www.cri-inc.com">http://www.cri-inc.com</a>, Boston, MA.

H.-S. Tan, E. Schreiber, and W.S. Warren, �??Infrared pulse shaping by parametric transfer,�?? in Ultrafast Phenomena XIII, M. M. Murnane, N. F. Scherer, R. J. Dwayne Miller, and A. M. Weiner, eds., (in press).

S. Mukamel, Principles of nonlinear optical spectroscopy (Oxford University Press, New York, 1995).

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of femtosecond laser pulses (American Institute of Physics, New York, 1992).

Supplementary Material (1)

» Media 1: AVI (166 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of mid infrared pulse shaper. OPA: Optical parametric amplifier, AOPS: Acousto-optic pulse shaper, AWG: Arbitrary waveform generator (radio frequency), 2HG: Second harmonic generation, WL: White light continuum generation, P: Periscope to change polarization, D: Delay stage, SG: Spectral gate.

Fig. 2.
Fig. 2.

Spectrum of (a) the amplitude modulated shaped pump pulse and (b) the resultant idler shaped pulse from the OPA process.

Fig. 3.
Fig. 3.

(0.17Mb) SIXFROG traces of MIR phase locked two pulse train with varying phase relationship, Δϕ. XX,XY,X̄ and denotes the interpulse phase difference of 0,π/2,π and 3π/4 rad respectively.

Fig. 4.
Fig. 4.

All four double sided Feynman diagrams above are included in the second order contributions to the perturbative expansion to the density matrix. The ϕ’s denote the phases acquired by the perturbative terms from the interacting pulses. The diagram in (a) pertains to the OFID signal which we distill from the sum contribution using the phase cycling procedure.

Fig. 5.
Fig. 5.

Schematic for the acquisition of OFID. PD: Photodetector, BS: Beamsplitter.

Fig. 6.
Fig. 6.

Complex optical free induction decay of the C-H stretch of Chloroform obtained from experimental signal S(τ,δϕ).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E i ( z , ω ) z i d ω E s * ( ω ) E p ( ω + ω ) .
E i ( z , ω ) z i E S * ( ω p ω )
E i ( z , ω ) z i E p ( ω s + ω )
E ( t ) = A ( t ) e i ω L t + i ϕ 1 + A ( t τ ) e i ω L t + i ϕ 2
ρ 11 a ( τ , ϕ 1 , ϕ 2 ) e i ( ϕ 1 ϕ 2 ) g ( τ ) e i ( ω 0 ω L ) τ e Γ 10 τ
= e i ( ϕ 1 ϕ 2 ) ρ 11 FID
ρ 11 FID ( τ ) ρ 11 XX ( τ ) ρ 11 X X ¯ ( τ ) + i [ ρ 11 XY ( τ ) ρ 11 X Y ¯ ( τ ) ]

Metrics