Abstract

We report a new kind of polarization splitter based on dual-core photonic crystal fibers. The polarization splitter has a symmetric directional coupler configuration. Each core exhibits high birefringence, which gives rise to an adequate difference in the coupling lengths for the two orthogonal polarizations. A 1.7-mm-long splitter is obtained with the splitting ratio better than -11 dB and a bandwidth of 40 nm. The relationship between the length of the polarization splitter and the diameter of the air hole in the middle of the two cores is discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, Y. S. Oei, H. van Brog, and I. Moerman, �??Mode evolution type polarization splitter on InGaAsP/InP,�?? IEEE Photon. Technol. Lett. 5, 1412 �??1414 (1993).
    [CrossRef]
  2. J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J. �??W. van Gaalen, Y. S. Oei, and F. H. Groen, �??A short polarization splitter without metal overlays on InGaAsP-InP,�?? IEEE Photon. Technol. Lett. 9, 209-211 (1997).
    [CrossRef]
  3. T. Hayakawa, S. Asakawa, Y. Kokubun, �??Arrow-B type polarization splitter with asymmetric Y-branch fabricated by a self-alignment process,�?? J. Lightwave Technol. 15, 1165-1170 (1997).
    [CrossRef]
  4. P. Wei, W. Wang, �??A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,�?? IEEE Photon. Technol. Lett. 6, 245-248 (1994).
    [CrossRef]
  5. A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, �??A 1.3-µm directional coupler polarization splitter by Ion exchange,�?? J. Lightwave Technol. 11, 220-225 (1993).
    [CrossRef]
  6. K. Thyagarajam, and S. Pilevar, �??Resonant tunneling three-waveguide polarization splitter,�?? J. Lightwave Technol. 10, 1334-1337 (1992).
    [CrossRef]
  7. K. Lin, W. Chuang, and W. Lee, �??Proposal and analysis of an ultrashort directional coupler polarization splitter with an NLC coupling layer,�?? J. Lightwave Technol. 14, 2547-2553 (1996).
    [CrossRef]
  8. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  9. J. C. Knight, P. St. J. Russell, �??Photonic crystal fibers: new ways to guide light,�?? Science 296, 276-277 (2002).
    [CrossRef] [PubMed]
  10. F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, and S. Trillo, �??Full vectorial BPM modeling of indexguiding photonic crystal fibers and couplers,�?? Opt. Express 10, 54-59 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-1-54"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-1-54</a>
    [CrossRef] [PubMed]
  11. B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, �??Experimental study of dual-core photonic crystal fibre,�?? Electronics Letters 36, 1358-1359 (2000).
    [CrossRef]
  12. G. Kakarantzas, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, �??Directional coupling in a twin core photonic crystal fiber using heat treatment,�?? in Proc. CLEO Europe �?? Technical Digest 2001, (Institute of Electrical and Electronics Engineers, New York, 2001), 599-600 paper JTuD2.
  13. P. M. Blanchard, J. G. Burnett, G. R. G. Erry, A. H. Greenaway, P. Harrison, B. Mangan, J. C. Knight, P. St. J. Russell, M. J. Gander, R. McBride, J. D. C. Jones, �??Two-dimensional bend sensing with a single multicore optical fiber,�?? Smart Mater. Struct. 9, 132-140 (2000).
    [CrossRef]
  14. T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, �??Seeing things in a hole new light �?? photonic crystal fibers,�?? in Proc. APOC 2001, Proc. SPIE 4532, 206-219 (2001).
    [CrossRef]
  15. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, �??Modeling large air fraction holey optical fibers,�?? J. Lightwave Technol. 18, 50-56 (2000).
    [CrossRef]
  16. A. Ferrando, E. Silvestre, J. J. Miret, P. Andre´s, and M. V. Andre´s, �??Full-vector analysis of a realistic photonic crystal fiber,�?? Opt. Lett. 24, 276�??278 (1999).
    [CrossRef]
  17. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, �??Multipole method for microstructured optical fibers. I. Formulation,�?? J. Opt. Soc. Am. B 19 2331-2340 (2002).
    [CrossRef]
  18. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, �??Claddingmode-resonances in air�??silica microstructure optical fibers,�?? J. Lightwave Technol. 18, 1084�??1100 (2000).
    [CrossRef]

Electronics Letters (1)

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, �??Experimental study of dual-core photonic crystal fibre,�?? Electronics Letters 36, 1358-1359 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, Y. S. Oei, H. van Brog, and I. Moerman, �??Mode evolution type polarization splitter on InGaAsP/InP,�?? IEEE Photon. Technol. Lett. 5, 1412 �??1414 (1993).
[CrossRef]

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J. �??W. van Gaalen, Y. S. Oei, and F. H. Groen, �??A short polarization splitter without metal overlays on InGaAsP-InP,�?? IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

P. Wei, W. Wang, �??A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,�?? IEEE Photon. Technol. Lett. 6, 245-248 (1994).
[CrossRef]

J. Lightwave Technol (1)

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, �??Modeling large air fraction holey optical fibers,�?? J. Lightwave Technol. 18, 50-56 (2000).
[CrossRef]

J. Lightwave Technol. (5)

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, �??Claddingmode-resonances in air�??silica microstructure optical fibers,�?? J. Lightwave Technol. 18, 1084�??1100 (2000).
[CrossRef]

A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, �??A 1.3-µm directional coupler polarization splitter by Ion exchange,�?? J. Lightwave Technol. 11, 220-225 (1993).
[CrossRef]

K. Thyagarajam, and S. Pilevar, �??Resonant tunneling three-waveguide polarization splitter,�?? J. Lightwave Technol. 10, 1334-1337 (1992).
[CrossRef]

K. Lin, W. Chuang, and W. Lee, �??Proposal and analysis of an ultrashort directional coupler polarization splitter with an NLC coupling layer,�?? J. Lightwave Technol. 14, 2547-2553 (1996).
[CrossRef]

T. Hayakawa, S. Asakawa, Y. Kokubun, �??Arrow-B type polarization splitter with asymmetric Y-branch fabricated by a self-alignment process,�?? J. Lightwave Technol. 15, 1165-1170 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (1)

Science (2)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, P. St. J. Russell, �??Photonic crystal fibers: new ways to guide light,�?? Science 296, 276-277 (2002).
[CrossRef] [PubMed]

Smart Mater. Struct. (1)

P. M. Blanchard, J. G. Burnett, G. R. G. Erry, A. H. Greenaway, P. Harrison, B. Mangan, J. C. Knight, P. St. J. Russell, M. J. Gander, R. McBride, J. D. C. Jones, �??Two-dimensional bend sensing with a single multicore optical fiber,�?? Smart Mater. Struct. 9, 132-140 (2000).
[CrossRef]

Other (2)

T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, �??Seeing things in a hole new light �?? photonic crystal fibers,�?? in Proc. APOC 2001, Proc. SPIE 4532, 206-219 (2001).
[CrossRef]

G. Kakarantzas, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, �??Directional coupling in a twin core photonic crystal fiber using heat treatment,�?? in Proc. CLEO Europe �?? Technical Digest 2001, (Institute of Electrical and Electronics Engineers, New York, 2001), 599-600 paper JTuD2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Structure of the photonic crystal fiber with high-birefringence cores.

Fig. 2.
Fig. 2.

Input field with Gaussian distribution.

Fig. 3.
Fig. 3.

The normalized power transfers for x- and y-polarized light versus the length of fiber.

Fig. 4.
Fig. 4.

The field distributions for x- and y-polarized lights after a propagation of 1.715 mm.

Fig. 5
Fig. 5

The normalized power transfers for x- and y-polarized light versus the light wavelength.

Fig. 6.
Fig. 6.

The splitting ratio and the splitter length as a function of the relative size of the central air hole.

Fig. 7.
Fig. 7.

The normalized power transfers for x- and y-polarized light versus the length of fiber.

Metrics