Abstract

We propose a systematic approach to evaluating and optimising the wavelength conversion bandwidth and gain ripple of four-wave mixing based fiber optical wavelength converters. Truly tunable wavelength conversion in these devices requires a highly tunable pump. For a given fiber dispersion slope, we find an optimum dispersion curvature that maximises the wavelength conversion bandwidth.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Yamamoto, T. Imai, Y. Miyajima, and M. Nakazawa, �??High speed optical path routing by using four-wave mixing and a wavelength router with fiber gratings and optical circulators,�?? Opt. Commun. 120, 245�??248 (1995).
    [CrossRef]
  2. N. Antoniades, S. J. B. Yoo, K. Bala, G. Ellinas, and T. E. Stern, �??An architecture for a wavelength-interchanging cross-connect utilizing parametric wavelength converters,�?? IEEE J. Lightwave Technol. 17, 1113�??1125 (1999).
    [CrossRef]
  3. S. Nakamura, Y. Ueno, and K. Tajima, �??168-Gb/s All-optical wavelength conversion with a symmetric-Mach- Zehnder-type switch,�?? IEEE Photonics Tech. Lett. 13, 1091�??1093 (2001).
    [CrossRef]
  4. S. Spälter, H. Y. Hwang, J. Zimmermann, G. Lenz, T. aKatsufuji, S.-W. Cheong, and R. E. Slusher, �??Strong selfphase modulation in planar chalcogenide glass waveguides,�?? Opt. Lett. 27, 363�??365 (2002).
    [CrossRef]
  5. N. Chi, L. Xu, L. Christiansen, K. Yvind, J. Zhang, P. Holm-Nielsen, C. Peucheret, C.Zhang and P. Jeppesen, �??Optical label swapping and packet transmission based on ASK/DPSK orthogonal modulation format in IP-over- WDM networks,�?? in Proceedings of OFC 2003, Paper FS2 (2003), pp. 792�??794.
  6. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, �??Polarization-independent one-pump fiber-optical parametric amplifier,�?? IEEE Photonics Tech. Lett. 14, 1506�??1508 (2002).
    [CrossRef]
  7. M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, �??Transparent wavelength conversion in fibre with 24nm pump tuning range,�?? Electron. Lett. 38, 85�??86 (2002).
    [CrossRef]
  8. J. Hiroishi, N. Kumano, K. Mukasa, R. Sugizaki, R. Miyabe, S.-I. Matsushita, H. Tobioka, S. Namaki, and T. Yagi, �??Dispersion slope controlled HNL-DSF with high ã of 25W-1km-1 and band conversion experiment using this fibre,�?? in ECOC 2002 Post deadline proceedings (2002), p. PD1.5.
  9. J. L. Blows and S. E. French, �??Low-noise-figure optical parametric amplifier with a continuous-wave frequency modulated pump,�?? Opt. Lett. 27, 491�??493 (2002).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995), 2nd edn.
  11. L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, �??Broadband and flat parametric gain with a single low-power pump in a multi-section fiber arrangement,�?? in Proceedings of OFC 2002, Paper TuS2 (2002), pp. 125�??126.

Electron. Lett.

M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, �??Transparent wavelength conversion in fibre with 24nm pump tuning range,�?? Electron. Lett. 38, 85�??86 (2002).
[CrossRef]

IEEE J. Lightwave Technol.

N. Antoniades, S. J. B. Yoo, K. Bala, G. Ellinas, and T. E. Stern, �??An architecture for a wavelength-interchanging cross-connect utilizing parametric wavelength converters,�?? IEEE J. Lightwave Technol. 17, 1113�??1125 (1999).
[CrossRef]

IEEE Photonics Tech. Lett.

S. Nakamura, Y. Ueno, and K. Tajima, �??168-Gb/s All-optical wavelength conversion with a symmetric-Mach- Zehnder-type switch,�?? IEEE Photonics Tech. Lett. 13, 1091�??1093 (2001).
[CrossRef]

K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, �??Polarization-independent one-pump fiber-optical parametric amplifier,�?? IEEE Photonics Tech. Lett. 14, 1506�??1508 (2002).
[CrossRef]

Opt. Commun.

T. Yamamoto, T. Imai, Y. Miyajima, and M. Nakazawa, �??High speed optical path routing by using four-wave mixing and a wavelength router with fiber gratings and optical circulators,�?? Opt. Commun. 120, 245�??248 (1995).
[CrossRef]

Opt. Lett.

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995), 2nd edn.

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, �??Broadband and flat parametric gain with a single low-power pump in a multi-section fiber arrangement,�?? in Proceedings of OFC 2002, Paper TuS2 (2002), pp. 125�??126.

N. Chi, L. Xu, L. Christiansen, K. Yvind, J. Zhang, P. Holm-Nielsen, C. Peucheret, C.Zhang and P. Jeppesen, �??Optical label swapping and packet transmission based on ASK/DPSK orthogonal modulation format in IP-over- WDM networks,�?? in Proceedings of OFC 2003, Paper FS2 (2003), pp. 792�??794.

J. Hiroishi, N. Kumano, K. Mukasa, R. Sugizaki, R. Miyabe, S.-I. Matsushita, H. Tobioka, S. Namaki, and T. Yagi, �??Dispersion slope controlled HNL-DSF with high ã of 25W-1km-1 and band conversion experiment using this fibre,�?? in ECOC 2002 Post deadline proceedings (2002), p. PD1.5.

Supplementary Material (1)

» Media 1: GIF (32 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the operation of an ideal wavelength converter. a) Conversion from a fixed λ s to an arbitrary λ c , within a range Δλ. b) Conversion from a fixed λ c to an arbitrary λ s , within a range Δλ. c) Boundary for the region representing conversion from an arbitrary λ s to an arbitrary λ c , both within the same range Δλ.

Fig. 2.
Fig. 2.

a) Theoretical gain spectra for a typical parametric amplifier at two different pump wavelengths. b) Ideal wavelength conversion spectra for two different pump wavelengths. Pump wavelengths are 1553 nm (black) and 1558 nm (red). G thresh (dotted) was chosen to be the gain at λ s p . Other parameters are in Table 1.

Fig. 3.
Fig. 3.

Black contours show the intersection of gain curves for a PWC with G thresh=G 0. Fiber parameters are shown in Table 1. A square of maximum area (green) has been fitted and indicates the useful device wavelength coverage for a fixed band.

Fig. 4.
Fig. 4.

a) Animation showing how G=G 0 contours (black) change with decreasing β4 and corresponding device bandwidth (green). The red square is the maximum bandwidth, for β4=β4opt≈4.11×10-54s4m-1. The blue square represents the bandwidth when β4=0. b) Plot of β4opt (black) and corresponding bandwidth maxima (red) for fibers with different β3 values. The dashed red line shows the worst effect of a 10% perturbation from β4opt. γ, Pp and L are as in Table 1. [Media 1]

Tables (1)

Tables Icon

Table 1. Table of parameters used in calculations [11]. λ0 is the dispersion zero wavelength of the fiber, γ is the fiber nonlinearity, L the fiber length, Pp the pump power, and β3 and β4 are the third and fourth order dispersion parameters at λ0.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

2 ω p = ω s + ω c ,
Δ β = 2 β p β s β c .
G = ( γ P P g sinh ( g L ) ) 2 ,
g 2 = 1 4 [ Δ β ( 4 γ P P Δ β ) ] .
G max = sinh 2 ( γ P P L ) .
G 0 = ( γ P P L ) 2 .
Δ β = ( β 3 ( ω p ω 0 ) + β 4 2 [ ( ω p ω 0 ) 2 + 1 6 ( ω p ω s ) 2 ] ) ( ω p ω s ) 2 .
R = G max G 0 = ( sinh ( γ P P L ) γ P P L ) 2 .
ω S = ω p ± 12 Φ β 4 , ω s = ω p and
ω s = ω p ± 6 Φ ± Φ 2 ( 16 3 ) β 4 γ P p β 4 ,
Δ ω = 2 ( 48 γ P p β 4 ) 1 4 , and when β 4 = 0 , Δ ω = 2 ( 4 γ P p β 3 ) 1 3 .

Metrics