Abstract

We describe a reference structure based sensor system for tracking the motion of an object. The reference structure is designed to implement a Hadamard transformation over a range of angular perspectives. We implemented a reference structure with an angular resolution of 5° and a field of view of 40°.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. T. Cathey, E. R. Dowski, �??New Paradigm for Imaging Systems,�?? Appl. Opt. 41, 6080-6092, 2002.
    [CrossRef] [PubMed]
  2. B. Ford, M. R. Descour, and R. M. Lynch, �??Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,�?? Opt. Express 9, 444-453, (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-9-444">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-9-444</a>.
    [CrossRef] [PubMed]
  3. T. M. Cannon and E. E. Fenimore, �??Coded Aperture Imaging - Many holes make light work,�?? Opt. Eng. 19, 283-289, 1980.
  4. G. K. Skinner, �??Imaging with Coded-Aperture Masks,�?? Nuclear Instruments and Methods in Physics Research Section a- Accelerators Spectrometers Detectors and Associated Equipment, 221, 33-40, 1984.
  5. D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, �??Visible cone-beam tomography with a lensless interferometric camera,�?? Science, 284, 2164-2166, 1999.
    [CrossRef] [PubMed]
  6. D. J. Brady and Z. U. Rahman, �??Integrated analysis and design of analog and digital processing in imaging systems: introduction to the feature issue,�?? Appl. Opt. 41, 6049-6049, 2002.
    [CrossRef] [PubMed]
  7. G. Barbastathis and D. J. Brady, �??Multidimensional tomographic imaging using volume holography,�?? Proceedings of the IEEE, 87, 2098-2120, 1999.
    [CrossRef]
  8. E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci and A. Spizzichino, �??Coded Aperture imaging in X- and Gamma-ray astronomy,�?? Space Sci. Rev. 45, 349-403, 1987.
    [CrossRef]
  9. G. K. Skinner and T. J. Ponman, �??Inverse Problems in X-Ray and Gamma-Ray Astronomical Imaging,�?? Inverse Problems 11, 655-676, 1995.
    [CrossRef]
  10. R. H. Dicke, �??Scatter-hole cameras for X-rays and gamma rays,�?? Astrophys. J. 153, L101-L106, 1968.
    [CrossRef]
  11. R. G. Driggers, C. E. Halford and G. D. Boreman, �??Parameters of Spinning Am Reticles,�?? Appl. Opt. 30, 2675-2684, 1991.
    [CrossRef] [PubMed]
  12. R. G. Driggers, C. E. Halford, G. D. Boreman, D. Lattman and K. F. Williams, �??Parameters of Spinning Fm Reticles,�?? Appl. Opt. 30, 887-895,
    [CrossRef] [PubMed]
  13. J. R. Baldwin, �??Composite Fresnel lens for use in passive infrared detection system - has array of Fresnel lens segments having expanded composite field-of- view due to cross-over of two segment groups�?? field of view,�?? Hubbell Inc. , Patent US5442178-A, 1995.
  14. J. R. Baldwin, �??Composite Fresnel lens for passive infrared detection system - has two groups of lens segments arranged contiguous side-by-side relationship along curve, one group positioned according to rules for narrow long range cover the other group for short range cover,�?? Hubbell Inc., Patent CA2222663-A, 1998.
  15. H. L. Berman, �??Infrared intrusion detector system - has truncated conical mirror for focusing radiation from field of view onto sensing element,�?? Hoermann Corp, Patent US3703718-A, 1982.
  16. H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice Hall Inc 1977.
  17. K. Itoh and Y. Ohtsuka, �??Fourier-transform spectral imaging: retrieval of source information from three-dimensional spatial coherence,�?? J. Opt. Soc. Am. A 3, 94-100, 1986.
    [CrossRef]
  18. D. L. Marks, R. Stack, A. J. Johnson, D. J. Brady, and D. C. Munson, �??Cone-beam tomography with a digital camera,�?? Appl. Opt. 40, 1795-1805, 2001.
    [CrossRef]
  19. M. Harwit and N. J. A. Sloane, Hadamard Transformation Optics, Academic Press 1979.
  20. P. F. Jacobs, Rapid prototyping & Manufacturing: Fundamentals of Stereolithography, Society of Manufacturing Engineers 1993.
  21. Photonic detectors Inc. <a href="http://www.photonicdetectors.com">http://www.photonicdetectors.com</a>

Appl. Opt. (5)

Astrophys. J. (1)

R. H. Dicke, �??Scatter-hole cameras for X-rays and gamma rays,�?? Astrophys. J. 153, L101-L106, 1968.
[CrossRef]

Inverse Problems (1)

G. K. Skinner and T. J. Ponman, �??Inverse Problems in X-Ray and Gamma-Ray Astronomical Imaging,�?? Inverse Problems 11, 655-676, 1995.
[CrossRef]

J. Opt. Soc. Am. A (1)

K. Itoh and Y. Ohtsuka, �??Fourier-transform spectral imaging: retrieval of source information from three-dimensional spatial coherence,�?? J. Opt. Soc. Am. A 3, 94-100, 1986.
[CrossRef]

Opt. Eng. (1)

T. M. Cannon and E. E. Fenimore, �??Coded Aperture Imaging - Many holes make light work,�?? Opt. Eng. 19, 283-289, 1980.

Opt. Express (1)

Proc. IEEE (1)

G. Barbastathis and D. J. Brady, �??Multidimensional tomographic imaging using volume holography,�?? Proceedings of the IEEE, 87, 2098-2120, 1999.
[CrossRef]

Science (1)

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, �??Visible cone-beam tomography with a lensless interferometric camera,�?? Science, 284, 2164-2166, 1999.
[CrossRef] [PubMed]

Space Sci. Rev. (1)

E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci and A. Spizzichino, �??Coded Aperture imaging in X- and Gamma-ray astronomy,�?? Space Sci. Rev. 45, 349-403, 1987.
[CrossRef]

Other (8)

G. K. Skinner, �??Imaging with Coded-Aperture Masks,�?? Nuclear Instruments and Methods in Physics Research Section a- Accelerators Spectrometers Detectors and Associated Equipment, 221, 33-40, 1984.

J. R. Baldwin, �??Composite Fresnel lens for use in passive infrared detection system - has array of Fresnel lens segments having expanded composite field-of- view due to cross-over of two segment groups�?? field of view,�?? Hubbell Inc. , Patent US5442178-A, 1995.

J. R. Baldwin, �??Composite Fresnel lens for passive infrared detection system - has two groups of lens segments arranged contiguous side-by-side relationship along curve, one group positioned according to rules for narrow long range cover the other group for short range cover,�?? Hubbell Inc., Patent CA2222663-A, 1998.

H. L. Berman, �??Infrared intrusion detector system - has truncated conical mirror for focusing radiation from field of view onto sensing element,�?? Hoermann Corp, Patent US3703718-A, 1982.

H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice Hall Inc 1977.

M. Harwit and N. J. A. Sloane, Hadamard Transformation Optics, Academic Press 1979.

P. F. Jacobs, Rapid prototyping & Manufacturing: Fundamentals of Stereolithography, Society of Manufacturing Engineers 1993.

Photonic detectors Inc. <a href="http://www.photonicdetectors.com">http://www.photonicdetectors.com</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the reference structure based imaging system

Fig. 2.
Fig. 2.

Connectivity pattern of the reference structure: The lower array of dots represent 8 detector elements. Each line represents a pipe enabling the detector to see along a particular source angle. The upper array of dots represent the exit face of the pipes looking towards the source space. Note that even though there are 11 points, the number of source angles monitored is only 8.

Fig. 3.
Fig. 3.

Fabricated reference structure with a linear photodiode array attached to one of its end

Fig. 4.
Fig. 4.

Output of sensor 1 and 6 when a light source (fiber lamp) moves in front of the structure at a distance of 3m

Fig. 5.
Fig. 5.

Multiplexed output of the sensors when a fiber light source moves in front of the structure: Note that sensor 1 sees the last four angles viz 5°, 10°, 15° and 20° as given by the transformation matrix described in Eq. (7)

Fig. 6.
Fig. 6.

Reconstruction of the motion of the fiber source

Fig. 7.
Fig. 7.

Reconstructed source space of a car moving at 10mph

Fig. 8.
Fig. 8.

Reconstruction of the motion of two fiber lamps

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

M ( x , y ) = T ( x , y ) S ( x , y )
m = T s
m ( r ) = T ( r , θ ) s ( θ ) d θ
m i = j T i ( θ j ) s ( θ j )
N = θ Δ θ
d D < 2 l L
T = ( 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 )

Metrics