Abstract

We describe a reference structure based sensor system for tracking the motion of an object. The reference structure is designed to implement a Hadamard transformation over a range of angular perspectives. We implemented a reference structure with an angular resolution of 5° and a field of view of 40°.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coded apertures for efficient pyroelectric motion tracking

U. Gopinathan, D. J. Brady, and N. P. Pitsianis
Opt. Express 11(18) 2142-2152 (2003)

Imaging with random 3D reference structures

Prasant Potuluri, Mingbo Xu, and David J. Brady
Opt. Express 11(18) 2134-2141 (2003)

Compressive tomography

David J. Brady, Alex Mrozack, Ken MacCabe, and Patrick Llull
Adv. Opt. Photon. 7(4) 756-813 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. T. Cathey and E. R. Dowski, “New Paradigm for Imaging Systems,” Appl. Opt.,  41, 6080–6092, 2002.
    [Crossref] [PubMed]
  2. B. Ford, M. R. Descour, and R. M. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express,  9, 444–4532001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-9-444.
    [Crossref] [PubMed]
  3. T. M. Cannon and E. E. Fenimore, “Coded Aperture Imaging - Many holes make light work,” Optical Engineering 19, 283–289, 1980.
  4. G. K. Skinner, “Imaging with Coded-Aperture Masks,” Nuclear Instruments and Methods in Physics Research Section a- Accelerators Spectrometers Detectors and Associated Equipment, 221, 33–40, 1984.
  5. D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science,  284, 2164–2166, 1999.
    [Crossref] [PubMed]
  6. D. J. Brady and Z. U. Rahman, “Integrated analysis and design of analog and digital processing in imaging systems: introduction to the feature issue,” Appl. Opt.,  41, 6049–6049, 2002.
    [Crossref] [PubMed]
  7. G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proceedings of the IEEE,  87, 2098–2120, 1999.
    [Crossref]
  8. E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, and A. Spizzichino, “Coded Aperture imaging in X- and Gamma-ray astronomy,” Space Sci. Rev. 45, 349–403, 1987.
    [Crossref]
  9. G. K. Skinner and T. J. Ponman, “Inverse Problems in X-Ray and Gamma-Ray Astronomical Imaging,” Inverse Problems,  11, 655–676, 1995.
    [Crossref]
  10. R. H. Dicke, “Scatter-hole cameras for X-rays and gamma rays,” Astrophys. J.,  153, L101–L106, 1968.
    [Crossref]
  11. R. G. Driggers, C. E. Halford, and G. D. Boreman, “Parameters of Spinning Am Reticles,” Appl. Opt.,  30, 2675–2684, 1991.
    [Crossref] [PubMed]
  12. R. G. Driggers, C. E. Halford, G. D. Boreman, D. Lattman, and K. F. Williams, “Parameters of Spinning Fm Reticles,” Appl. Opt.,  30, 887–895, 1991.
    [Crossref] [PubMed]
  13. J. R. Baldwin, “Composite Fresnel lens for use in passive infrared detection system - has array of Fresnel lens segments having expanded composite field-of- view due to cross-over of two segment groups’ field of view,” Hubbell Inc., Patent US5442178-A, 1995.
  14. J. R. Baldwin, “Composite Fresnel lens for passive infrared detection system - has two groups of lens segments arranged contiguous side-by-side relationship along curve, one group positioned according to rules for narrow long range cover the other group for short range cover,” Hubbell Inc., Patent CA2222663-A, 1998.
  15. H. L. Berman, “Infrared intrusion detector system - has truncated conical mirror for focusing radiation from field of view onto sensing element,” Hoermann Corp, Patent US3703718-A, 1982.
  16. H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice Hall Inc1977.
  17. K. Itoh and Y. Ohtsuka, “Fourier-transform spectral imaging: retrieval of source information from three-dimensional spatial coherence,” J. Opt. Soc. Am. A,  3, 94–100, 1986.
    [Crossref]
  18. D. L. Marks, R. Stack, A. J. Johnson, D. J. Brady, and D. C. Munson, “Cone-beam tomography with a digital camera,” Appl. Opt.,  40, 1795–1805, 2001.
    [Crossref]
  19. M. Harwit and N. J. A. Sloane, Hadamard Transformation Optics, Academic Press1979.
  20. P. F. Jacobs, Rapid prototyping & Manufacturing: Fundamentals of Stereolithography, Society of Manufacturing Engineers1993.
  21. Photonic detectors Inc.http://www.photonicdetectors.com

2002 (2)

2001 (2)

1999 (2)

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science,  284, 2164–2166, 1999.
[Crossref] [PubMed]

G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proceedings of the IEEE,  87, 2098–2120, 1999.
[Crossref]

1995 (1)

G. K. Skinner and T. J. Ponman, “Inverse Problems in X-Ray and Gamma-Ray Astronomical Imaging,” Inverse Problems,  11, 655–676, 1995.
[Crossref]

1991 (2)

1987 (1)

E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, and A. Spizzichino, “Coded Aperture imaging in X- and Gamma-ray astronomy,” Space Sci. Rev. 45, 349–403, 1987.
[Crossref]

1986 (1)

1980 (1)

T. M. Cannon and E. E. Fenimore, “Coded Aperture Imaging - Many holes make light work,” Optical Engineering 19, 283–289, 1980.

1968 (1)

R. H. Dicke, “Scatter-hole cameras for X-rays and gamma rays,” Astrophys. J.,  153, L101–L106, 1968.
[Crossref]

Andrews, H. C.

H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice Hall Inc1977.

Baldwin, J. R.

J. R. Baldwin, “Composite Fresnel lens for use in passive infrared detection system - has array of Fresnel lens segments having expanded composite field-of- view due to cross-over of two segment groups’ field of view,” Hubbell Inc., Patent US5442178-A, 1995.

J. R. Baldwin, “Composite Fresnel lens for passive infrared detection system - has two groups of lens segments arranged contiguous side-by-side relationship along curve, one group positioned according to rules for narrow long range cover the other group for short range cover,” Hubbell Inc., Patent CA2222663-A, 1998.

Barbastathis, G.

G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proceedings of the IEEE,  87, 2098–2120, 1999.
[Crossref]

Berman, H. L.

H. L. Berman, “Infrared intrusion detector system - has truncated conical mirror for focusing radiation from field of view onto sensing element,” Hoermann Corp, Patent US3703718-A, 1982.

Boreman, G. D.

Brady, D. J.

D. J. Brady and Z. U. Rahman, “Integrated analysis and design of analog and digital processing in imaging systems: introduction to the feature issue,” Appl. Opt.,  41, 6049–6049, 2002.
[Crossref] [PubMed]

D. L. Marks, R. Stack, A. J. Johnson, D. J. Brady, and D. C. Munson, “Cone-beam tomography with a digital camera,” Appl. Opt.,  40, 1795–1805, 2001.
[Crossref]

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science,  284, 2164–2166, 1999.
[Crossref] [PubMed]

G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proceedings of the IEEE,  87, 2098–2120, 1999.
[Crossref]

Brady, R. B.

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science,  284, 2164–2166, 1999.
[Crossref] [PubMed]

Cannon, T. M.

T. M. Cannon and E. E. Fenimore, “Coded Aperture Imaging - Many holes make light work,” Optical Engineering 19, 283–289, 1980.

Caroli, E.

E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, and A. Spizzichino, “Coded Aperture imaging in X- and Gamma-ray astronomy,” Space Sci. Rev. 45, 349–403, 1987.
[Crossref]

Cathey, W. T.

Descour, M. R.

Di Cocco, G.

E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, and A. Spizzichino, “Coded Aperture imaging in X- and Gamma-ray astronomy,” Space Sci. Rev. 45, 349–403, 1987.
[Crossref]

Dicke, R. H.

R. H. Dicke, “Scatter-hole cameras for X-rays and gamma rays,” Astrophys. J.,  153, L101–L106, 1968.
[Crossref]

Dowski, E. R.

Driggers, R. G.

Fenimore, E. E.

T. M. Cannon and E. E. Fenimore, “Coded Aperture Imaging - Many holes make light work,” Optical Engineering 19, 283–289, 1980.

Ford, B.

Halford, C. E.

Harwit, M.

M. Harwit and N. J. A. Sloane, Hadamard Transformation Optics, Academic Press1979.

Hunt, B. R.

H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice Hall Inc1977.

Itoh, K.

Jacobs, P. F.

P. F. Jacobs, Rapid prototyping & Manufacturing: Fundamentals of Stereolithography, Society of Manufacturing Engineers1993.

Johnson, A. J.

Lattman, D.

Lynch, R. M.

Marks, D. L.

D. L. Marks, R. Stack, A. J. Johnson, D. J. Brady, and D. C. Munson, “Cone-beam tomography with a digital camera,” Appl. Opt.,  40, 1795–1805, 2001.
[Crossref]

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science,  284, 2164–2166, 1999.
[Crossref] [PubMed]

Munson, D. C.

D. L. Marks, R. Stack, A. J. Johnson, D. J. Brady, and D. C. Munson, “Cone-beam tomography with a digital camera,” Appl. Opt.,  40, 1795–1805, 2001.
[Crossref]

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science,  284, 2164–2166, 1999.
[Crossref] [PubMed]

Natalucci, L.

E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, and A. Spizzichino, “Coded Aperture imaging in X- and Gamma-ray astronomy,” Space Sci. Rev. 45, 349–403, 1987.
[Crossref]

Ohtsuka, Y.

Ponman, T. J.

G. K. Skinner and T. J. Ponman, “Inverse Problems in X-Ray and Gamma-Ray Astronomical Imaging,” Inverse Problems,  11, 655–676, 1995.
[Crossref]

Rahman, Z. U.

Skinner, G. K.

G. K. Skinner and T. J. Ponman, “Inverse Problems in X-Ray and Gamma-Ray Astronomical Imaging,” Inverse Problems,  11, 655–676, 1995.
[Crossref]

G. K. Skinner, “Imaging with Coded-Aperture Masks,” Nuclear Instruments and Methods in Physics Research Section a- Accelerators Spectrometers Detectors and Associated Equipment, 221, 33–40, 1984.

Sloane, N. J. A.

M. Harwit and N. J. A. Sloane, Hadamard Transformation Optics, Academic Press1979.

Spizzichino, A.

E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, and A. Spizzichino, “Coded Aperture imaging in X- and Gamma-ray astronomy,” Space Sci. Rev. 45, 349–403, 1987.
[Crossref]

Stack, R.

Stack, R. A.

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science,  284, 2164–2166, 1999.
[Crossref] [PubMed]

Stephen, J. B.

E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, and A. Spizzichino, “Coded Aperture imaging in X- and Gamma-ray astronomy,” Space Sci. Rev. 45, 349–403, 1987.
[Crossref]

Williams, K. F.

Appl. Opt. (5)

Astrophys. J. (1)

R. H. Dicke, “Scatter-hole cameras for X-rays and gamma rays,” Astrophys. J.,  153, L101–L106, 1968.
[Crossref]

Inverse Problems (1)

G. K. Skinner and T. J. Ponman, “Inverse Problems in X-Ray and Gamma-Ray Astronomical Imaging,” Inverse Problems,  11, 655–676, 1995.
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Optical Engineering (1)

T. M. Cannon and E. E. Fenimore, “Coded Aperture Imaging - Many holes make light work,” Optical Engineering 19, 283–289, 1980.

Proceedings of the IEEE (1)

G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proceedings of the IEEE,  87, 2098–2120, 1999.
[Crossref]

Science (1)

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science,  284, 2164–2166, 1999.
[Crossref] [PubMed]

Space Sci. Rev. (1)

E. Caroli, J. B. Stephen, G. Di Cocco, L. Natalucci, and A. Spizzichino, “Coded Aperture imaging in X- and Gamma-ray astronomy,” Space Sci. Rev. 45, 349–403, 1987.
[Crossref]

Other (8)

G. K. Skinner, “Imaging with Coded-Aperture Masks,” Nuclear Instruments and Methods in Physics Research Section a- Accelerators Spectrometers Detectors and Associated Equipment, 221, 33–40, 1984.

M. Harwit and N. J. A. Sloane, Hadamard Transformation Optics, Academic Press1979.

P. F. Jacobs, Rapid prototyping & Manufacturing: Fundamentals of Stereolithography, Society of Manufacturing Engineers1993.

Photonic detectors Inc.http://www.photonicdetectors.com

J. R. Baldwin, “Composite Fresnel lens for use in passive infrared detection system - has array of Fresnel lens segments having expanded composite field-of- view due to cross-over of two segment groups’ field of view,” Hubbell Inc., Patent US5442178-A, 1995.

J. R. Baldwin, “Composite Fresnel lens for passive infrared detection system - has two groups of lens segments arranged contiguous side-by-side relationship along curve, one group positioned according to rules for narrow long range cover the other group for short range cover,” Hubbell Inc., Patent CA2222663-A, 1998.

H. L. Berman, “Infrared intrusion detector system - has truncated conical mirror for focusing radiation from field of view onto sensing element,” Hoermann Corp, Patent US3703718-A, 1982.

H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice Hall Inc1977.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the reference structure based imaging system

Fig. 2.
Fig. 2.

Connectivity pattern of the reference structure: The lower array of dots represent 8 detector elements. Each line represents a pipe enabling the detector to see along a particular source angle. The upper array of dots represent the exit face of the pipes looking towards the source space. Note that even though there are 11 points, the number of source angles monitored is only 8.

Fig. 3.
Fig. 3.

Fabricated reference structure with a linear photodiode array attached to one of its end

Fig. 4.
Fig. 4.

Output of sensor 1 and 6 when a light source (fiber lamp) moves in front of the structure at a distance of 3m

Fig. 5.
Fig. 5.

Multiplexed output of the sensors when a fiber light source moves in front of the structure: Note that sensor 1 sees the last four angles viz 5°, 10°, 15° and 20° as given by the transformation matrix described in Eq. (7)

Fig. 6.
Fig. 6.

Reconstruction of the motion of the fiber source

Fig. 7.
Fig. 7.

Reconstructed source space of a car moving at 10mph

Fig. 8.
Fig. 8.

Reconstruction of the motion of two fiber lamps

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

M ( x , y ) = T ( x , y ) S ( x , y )
m = T s
m ( r ) = T ( r , θ ) s ( θ ) d θ
m i = j T i ( θ j ) s ( θ j )
N = θ Δ θ
d D < 2 l L
T = ( 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 )

Metrics