Abstract

Using micro-fabrication techniques, we have manufactured a single element kinoform lens in single-crystal silicon with an elliptical profile for 12.398 keV (1Å) x-rays. By fabricating a lens that is optimized at fixed wavelengths, absorption in the lens material can be significantly reduced by removing 2π phase-shifting regions. This permits short focal length devices to be fabricated with small radii of curvatures at the lens apex. This feature allows one to obtain a high demagnification of a finite synchrotron electron source size. The reduced absorption loss also enables optics with a larger aperture, and hence improved resolution for focussing and imaging applications. Our first trial of these lenses has resulted in a one micron line focus (fwhm) at the National Synchrotron Light Source X13B beamline.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. O. Hignette et al. in X-Ray Micro- and Nano- Focusing: Applications and Techniques II (ed. McNulty) 105-116 (SPIE, San Diego, 2001).
  2. W. Yun et al. "Nanometer focusing of hard x rays by phase zone plates," Rev. Sci. Instrum. 70, 2238-2241 (1999).
    [CrossRef]
  3. C. G. Schroer et al. �??Nanofocusing parabolic refractive x-ray lenses,�?? Appl. Phys. Lett. 82, 1485-1487 (2003).
    [CrossRef]
  4. G. E. Ice, �??Microbeam-Forming Methods for Synchrotron Radiation,�?? X-Ray Spectrometry 26, 315-326 (1997).
    [CrossRef]
  5. P. Dhez, P. Chevallier, T. B. Lucatorto & C. Tarrio, �??Instrumental aspects of x-ray microbeams in the range above 1 keV,�?? Rev. Sci. Instrum. 70, 1907-1920 (1999).
    [CrossRef]
  6. L. B. Lesem, P. M. Hirsch & J. A. J. Jordan, IBM J. Res. Dev. 13, 150 (1969).
    [CrossRef]
  7. J. Kirz, �??Phase Zone Plates for X-rays and the Extreme UV,�?? J. Opt. Soc. Am. 64 (1974).
    [CrossRef]
  8. R. Gähler, J. Kalus & W. Mampe, �??An optical instrument for the search of a neutron charge,�?? J. Phys. E 13, 546-548 (1980).
    [CrossRef]
  9. S. Suehiro, H. Miyaji & H. Hayashi, �??Refractive lens for X-ray focus,�?? Nature 352, 385-386 (1991).
    [CrossRef]
  10. A. Snigirev, V. Kohn, I. Snigireva & B. Lengeler, �??A compound refractive lens for focusing high-energy X-rays,�?? Nature 384, 49-51 (1996).
    [CrossRef]
  11. M. A. Piestrup, J. T. Cremer, H. R. Beguiristain, C. K. Gary & R. H. Pantell, �??Two-dimensional x-ray focusing from compound lenses made of plastic,�?? Rev. Sci. Instrum. 71, 4375-4379 (2000).
    [CrossRef]
  12. J. T. Cremer, M. A. Piestrup, H. R. Beguiristain & C. K. Gary, �??Cylindrical compound refractive x-ray lenses using plastic substrates,�?? Rev. Sci. Instrum. 70, 3545-3548 (1999).
    [CrossRef]
  13. C. G. Schroer et al. �??High resolution imaging and lithography with hard x rays using parabolic compund refractive lenses,�?? Rev. Sci. Instrum. 73, 1640-1642 (2002).
    [CrossRef]
  14. B. Lengeler et al. �??A microscope for hard x rays based on parabolic refractive lenses,�?? Appl. Phys. Lett. 74, 3924-3926 (1999).
    [CrossRef]
  15. B. Lengeler et al. �??Imaging by parabolic refractive lenses in the hard X-ray range,�?? J. Sync. Rad. 6, 1153-1167 (1999).
    [CrossRef]
  16. I. Snigireva et al. �??Holographic X-ray optical elements: transition between refraction and diffraction,�?? Nucl. Instrum. Methods Phys. Res. A 467-468, 982-985 (2001).
    [CrossRef]
  17. V. Aristov et al. �??X-ray refractive planar lens with minimized absorption,�?? Appl. Phys. Lett. 77, 4058-4060 (2000).
    [CrossRef]
  18. B. Nohammer, J. Hoszowska, A. K. Freund & C. David, �??Diamond planar refractive lenses for third and fourth generation x-ray sources,�?? J. Sync. Rad. 10, 168-171 (2003).
    [CrossRef]
  19. D. A. Buralli, G. M. Morris & J. R. Rogers, �??Optical performance of holographic kinoforms,�?? Appl. Opt. 28, 976-983 (1989).
    [CrossRef] [PubMed]
  20. B. Lengeler, J. Tümmler, A. Snigirev, I. Snigireva & C. Raven, �??Transmission and gain of singly and doubly focusing refractive x-ray lenses,�?? J. Appl. Phys. 84, 5855-5861 (1998).
    [CrossRef]
  21. E. Hecht & A. Zajac. Optics (ed. Addison-Wesley) (, 1979).
  22. V. Moreno, J. F. Roman & J. R. Salgueiro, �??High efficiency diffractive lenses: Deduction of kinoform profile,�?? Am. J. Phys. 65, 556-562 (1997).
  23. C. Welnak, G. J. Chen & F. Cerrina, �??Shadow: A Synchrotron Radiation And X-Ray Optics Simulation Tool,�?? Nucl. Instrum. Methods Phys. Res. A 347, 344-347 (1994).
  24. B. Lai, K. Chapman & F. Cerrina, �??SHADOW: New Developments,�?? Nucl. Instrum. Methods Phys. Res. A 266, 544-549 (1988).
  25. B. Lai & F. Cerrina, �??SHADOW: A Synchrotron Radiation Ray Tracing Program,�?? Nucl. Instrum. Methods Phys. Res. A 246, 337-341 (1986).
  26. C. Welnak, P. Anderson, M. Khan, S. Singh & F. Cerrina, �??Recent developments in SHADOW,�?? Rev. Sci. Instrum. 63, 865-868 (1992).
    [CrossRef]
  27. G. Rakowsky, D. Lynch, E. B. Blum & S. Krinsky, �??NSLS In-Vaccum Undulators and Mini-Beta Straights,�?? Proceedings of the 2001 Particle Accelerator Conference 4, 2453-2455 (2001).
  28. D. Lynch & G. Rakowsky, �??Mechanical Design of NSLS Mini-gap Undulator (MGU),�?? 2nd Int. Workshop on Mech. Eng. Design of Sync. Rad. Equip. and Instrum. (MEDSI02) (2002).
  29. A. Stein et al. �??Diffractive x-ray optics using production fabrication methods,�?? J. Vac. Sci. Technol. B 21, 1071-1023 (2003).
    [CrossRef]
  30. I. Snigireva et al. in X-Ray Micro- and Nano- Focusing: Applications and Techniques II (Proceedings of SPIE, San Diego, USA, 2001).
  31. G. Smith & D. A. Atchison, The Eye and Visual Optical Instruments (ed. Press, C. U.) (1997).

Am. J. Phys. (1)

V. Moreno, J. F. Roman & J. R. Salgueiro, �??High efficiency diffractive lenses: Deduction of kinoform profile,�?? Am. J. Phys. 65, 556-562 (1997).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

C. G. Schroer et al. �??Nanofocusing parabolic refractive x-ray lenses,�?? Appl. Phys. Lett. 82, 1485-1487 (2003).
[CrossRef]

B. Lengeler et al. �??A microscope for hard x rays based on parabolic refractive lenses,�?? Appl. Phys. Lett. 74, 3924-3926 (1999).
[CrossRef]

V. Aristov et al. �??X-ray refractive planar lens with minimized absorption,�?? Appl. Phys. Lett. 77, 4058-4060 (2000).
[CrossRef]

IBM J. Res. Dev. (1)

L. B. Lesem, P. M. Hirsch & J. A. J. Jordan, IBM J. Res. Dev. 13, 150 (1969).
[CrossRef]

J. Appl. Phys. (1)

B. Lengeler, J. Tümmler, A. Snigirev, I. Snigireva & C. Raven, �??Transmission and gain of singly and doubly focusing refractive x-ray lenses,�?? J. Appl. Phys. 84, 5855-5861 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Kirz, �??Phase Zone Plates for X-rays and the Extreme UV,�?? J. Opt. Soc. Am. 64 (1974).
[CrossRef]

J. Phys. E (1)

R. Gähler, J. Kalus & W. Mampe, �??An optical instrument for the search of a neutron charge,�?? J. Phys. E 13, 546-548 (1980).
[CrossRef]

J. Sync. Rad. (2)

B. Nohammer, J. Hoszowska, A. K. Freund & C. David, �??Diamond planar refractive lenses for third and fourth generation x-ray sources,�?? J. Sync. Rad. 10, 168-171 (2003).
[CrossRef]

B. Lengeler et al. �??Imaging by parabolic refractive lenses in the hard X-ray range,�?? J. Sync. Rad. 6, 1153-1167 (1999).
[CrossRef]

J. Vac. Sci. Technol. (1)

A. Stein et al. �??Diffractive x-ray optics using production fabrication methods,�?? J. Vac. Sci. Technol. B 21, 1071-1023 (2003).
[CrossRef]

Nature (2)

S. Suehiro, H. Miyaji & H. Hayashi, �??Refractive lens for X-ray focus,�?? Nature 352, 385-386 (1991).
[CrossRef]

A. Snigirev, V. Kohn, I. Snigireva & B. Lengeler, �??A compound refractive lens for focusing high-energy X-rays,�?? Nature 384, 49-51 (1996).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (4)

I. Snigireva et al. �??Holographic X-ray optical elements: transition between refraction and diffraction,�?? Nucl. Instrum. Methods Phys. Res. A 467-468, 982-985 (2001).
[CrossRef]

C. Welnak, G. J. Chen & F. Cerrina, �??Shadow: A Synchrotron Radiation And X-Ray Optics Simulation Tool,�?? Nucl. Instrum. Methods Phys. Res. A 347, 344-347 (1994).

B. Lai, K. Chapman & F. Cerrina, �??SHADOW: New Developments,�?? Nucl. Instrum. Methods Phys. Res. A 266, 544-549 (1988).

B. Lai & F. Cerrina, �??SHADOW: A Synchrotron Radiation Ray Tracing Program,�?? Nucl. Instrum. Methods Phys. Res. A 246, 337-341 (1986).

Rev. Sci. Instrum. (6)

C. Welnak, P. Anderson, M. Khan, S. Singh & F. Cerrina, �??Recent developments in SHADOW,�?? Rev. Sci. Instrum. 63, 865-868 (1992).
[CrossRef]

P. Dhez, P. Chevallier, T. B. Lucatorto & C. Tarrio, �??Instrumental aspects of x-ray microbeams in the range above 1 keV,�?? Rev. Sci. Instrum. 70, 1907-1920 (1999).
[CrossRef]

W. Yun et al. "Nanometer focusing of hard x rays by phase zone plates," Rev. Sci. Instrum. 70, 2238-2241 (1999).
[CrossRef]

M. A. Piestrup, J. T. Cremer, H. R. Beguiristain, C. K. Gary & R. H. Pantell, �??Two-dimensional x-ray focusing from compound lenses made of plastic,�?? Rev. Sci. Instrum. 71, 4375-4379 (2000).
[CrossRef]

J. T. Cremer, M. A. Piestrup, H. R. Beguiristain & C. K. Gary, �??Cylindrical compound refractive x-ray lenses using plastic substrates,�?? Rev. Sci. Instrum. 70, 3545-3548 (1999).
[CrossRef]

C. G. Schroer et al. �??High resolution imaging and lithography with hard x rays using parabolic compund refractive lenses,�?? Rev. Sci. Instrum. 73, 1640-1642 (2002).
[CrossRef]

X-Ray Spectrometry (1)

G. E. Ice, �??Microbeam-Forming Methods for Synchrotron Radiation,�?? X-Ray Spectrometry 26, 315-326 (1997).
[CrossRef]

Other (6)

O. Hignette et al. in X-Ray Micro- and Nano- Focusing: Applications and Techniques II (ed. McNulty) 105-116 (SPIE, San Diego, 2001).

G. Rakowsky, D. Lynch, E. B. Blum & S. Krinsky, �??NSLS In-Vaccum Undulators and Mini-Beta Straights,�?? Proceedings of the 2001 Particle Accelerator Conference 4, 2453-2455 (2001).

D. Lynch & G. Rakowsky, �??Mechanical Design of NSLS Mini-gap Undulator (MGU),�?? 2nd Int. Workshop on Mech. Eng. Design of Sync. Rad. Equip. and Instrum. (MEDSI02) (2002).

I. Snigireva et al. in X-Ray Micro- and Nano- Focusing: Applications and Techniques II (Proceedings of SPIE, San Diego, USA, 2001).

G. Smith & D. A. Atchison, The Eye and Visual Optical Instruments (ed. Press, C. U.) (1997).

E. Hecht & A. Zajac. Optics (ed. Addison-Wesley) (, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Hard x-ray Fresnel lens. The profile is elliptical and steps can be seen where material that originally contributed to 2π phase-shifts has been removed. Inset: Schematic of Fresnel lens showing the length of the phase-shifting region.

Fig. 2.
Fig. 2.

A single planar concave lens. Incident parallel x-rays are brought to a focus at (F,0) due to the difference between the refractive indices of the lens medium and air/vacuum interface.

Fig. 3.
Fig. 3.

Elliptical and parabolic profiles with the same radii of curvature at (0,0). The elliptical curve reaches a maximum at 7.5 cm, which determines the aperture of the system.

Fig. 4.
Fig. 4.

(left) - Ray-tracing simulations of a solid single-element refractive lens. (right) - Histogram of a vertical slice through the line focus

Fig. 5.
Fig. 5.

Copper fluorescence Knife-edge scan taken on the refractive lens (shown in Fig.1).

Metrics