Abstract

Using micro-fabrication techniques, we have manufactured a single element kinoform lens in single-crystal silicon with an elliptical profile for 12.398 keV (1Å) x-rays. By fabricating a lens that is optimized at fixed wavelengths, absorption in the lens material can be significantly reduced by removing 2π phase-shifting regions. This permits short focal length devices to be fabricated with small radii of curvatures at the lens apex. This feature allows one to obtain a high demagnification of a finite synchrotron electron source size. The reduced absorption loss also enables optics with a larger aperture, and hence improved resolution for focussing and imaging applications. Our first trial of these lenses has resulted in a one micron line focus (fwhm) at the National Synchrotron Light Source X13B beamline.

© 2003 Optical Society of America

Full Article  |  PDF Article
Related Articles
Focusing high-energy x rays by compound refractive lenses

A. Snigirev, V. Kohn, I. Snigireva, A. Souvorov, and B. Lengeler
Appl. Opt. 37(4) 653-662 (1998)

Refractive lenses for coherent x-ray sources

Richard H. Pantell, Joseph Feinstein, H. Raul Beguiristain, Melvin A. Piestrup, Charles K. Gary, and J. Theodore Cremer
Appl. Opt. 40(28) 5100-5105 (2001)

X-ray focusing with compound lenses made from beryllium

H. R. Beguiristain, J. T. Cremer, M. A. Piestrup, C. K. Gary, and R. H. Pantell
Opt. Lett. 27(9) 778-780 (2002)

References

  • View by:
  • |
  • |

  1. O. Hignetteet al. in X-Ray Micro- and Nano- Focusing: Applications and Techniques II (ed. McNulty) 105–116 (SPIE, San Diego, 2001).
  2. W. Yunet al. Nanometer focusing of hard x rays by phase zone plates. Rev. Sci. Instrum.70, 2238–2241 (1999).
    [Crossref]
  3. C. G. Schroeret al. Nanofocusing parabolic refractive x-ray lenses. Appl. Phys. Lett.82, 1485–1487 (2003).
    [Crossref]
  4. G. E. Ice. Microbeam-Forming Methods for Synchrotron Radiation. X-Ray Spectrometry26, 315–326 (1997).
    [Crossref]
  5. P. Dhez, P. Chevallier, T. B. Lucatorto, and C. Tarrio. Instrumental aspects of x-ray microbeams in the range above 1 keV. Rev. Sci. Instrum.70, 1907–1920 (1999).
    [Crossref]
  6. L. B. Lesem, P. M. Hirsch, and J. A. J. Jordan. IBM J. Res. Dev.13, 150 (1969).
    [Crossref]
  7. J. Kirz. Phase Zone Plates for X-rays and the Extreme UV. J. Opt. Soc. Am.64 (1974).
    [Crossref]
  8. R. Gähler, J. Kalus, and W. Mampe. An optical instrument for the search of a neutron charge. J. Phys. E13, 546–548 (1980).
    [Crossref]
  9. S. Suehiro, H. Miyaji, and H. Hayashi. Refractive lens for X-ray focus. Nature352, 385–386 (1991).
    [Crossref]
  10. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler. A compound refractive lens for focusing high-energy X-rays. Nature384, 49–51 (1996).
    [Crossref]
  11. M. A. Piestrup, J. T. Cremer, H. R. Beguiristain, C. K. Gary, and R. H. Pantell. Two-dimensional x-ray focusing from compound lenses made of plastic. Rev. Sci. Instrum.71, 4375–4379 (2000).
    [Crossref]
  12. J. T. Cremer, M. A. Piestrup, H. R. Beguiristain, and C. K. Gary. Cylindrical compound refractive x-ray lenses using plastic substrates. Rev. Sci. Instrum.70, 3545–3548 (1999).
    [Crossref]
  13. C. G. Schroeret al. High resolution imaging and lithography with hard x rays using parabolic compund refractive lenses. Rev. Sci. Instrum.73, 1640–1642 (2002).
    [Crossref]
  14. B. Lengeleret al. A microscope for hard x rays based on parabolic refractive lenses. Appl. Phys. Lett.4, 3924–3926 (1999).
    [Crossref]
  15. B. Lengeleret al. Imaging by parabolic refractive lenses in the hard X-ray range. J. Sync. Rad.6, 1153–1167 (1999).
    [Crossref]
  16. I. Snigirevaet al. Holographic X-ray optical elements: transition between refraction and diffraction. Nuclear Instruments & Methods in Physics Research A467–468, 982–985 (2001).
    [Crossref]
  17. V. Aristovet al. X-ray refractive planar lens with minimized absorption. Appl. Phys. Lett.77, 4058–4060 (2000).
    [Crossref]
  18. B. Nohammer, J. Hoszowska, A. K. Freund, and C. David. Diamond planar refractive lenses for third and fourth generation x-ray sources. J. Sync. Rad.10, 168–171 (2003).
    [Crossref]
  19. D. A. Buralli, G. M. Morris, and J. R. Rogers. Optical performance of holographic kinoforms. Appl. Opt.28, 976–983 (1989).
    [Crossref] [PubMed]
  20. B. Lengeler, J. Tümmler, A. Snigirev, I. Snigireva, and C. Raven. Transmission and gain of singly and doubly focusing refractive x-ray lenses. Journal Of Applied Physics84, 5855–5861 (1998).
    [Crossref]
  21. E. Hecht and A. Zajac. Optics (ed. Addison-Wesley) (, 1979).
  22. V. Moreno, J. F. Roman, and J. R. Salgueiro. High efficiency diffractive lenses: Deduction of kinoform profile. Am. J. Phys.65, 556–562 (1997).
    [Crossref]
  23. G. Smith and D. A. Atchison. The Eye and Visual Optical Instruments (ed. C. U. Press) (1997).
  24. C. Welnak, G. J. Chen, and F. Cerrina. Shadow: A Synchrotron Radiation And X-Ray Optics Simulation Tool. Nuclear Instruments & Methods in Physics Research A 347, 344–347 (1994).
  25. B. Lai, K. Chapman, and F. Cerrina. SHADOW: New Developments. Nuclear Instruments & Methods in Physics Research A 266, 544–549 (1988).
  26. B. Lai and F. Cerrina. SHADOW: A Synchrotron Radiation Ray Tracing Program. Nuclear Instruments & Methods in Physics Research A 246, 337–341 (1986).
  27. C. Welnak, P. Anderson, M. Khan, S. Singh, and F. Cerrina. Recent developments in SHADOW. Rev. Sci. Instrum.63, 865–868 (1992).
    [Crossref]
  28. G. Rakowsky, D. Lynch, E. B. Blum, and S. Krinsky. NSLS In-Vaccum Undulators and Mini-Beta Straights. Proceedings of the 2001 Particle Accelerator Conference 4, 2453–2455 (2001).
  29. D. Lynch and G. Rakowsky. Mechanical Design of NSLS Mini-gap Undulator (MGU). 2nd Int. Workshop on Mech. Eng. Design of Sync. Rad. Equip. and Instrum. (MEDSI02) (2002).
  30. A. Steinet al. Diffractive x-ray optics using production fabrication methods. J.Vac.Sci. Technol. B21, 1071–1023 (2003).
    [Crossref]
  31. I. Snigirevaet al. in X-Ray Micro- and Nano- Focusing: Applications and Techniques II (Proceedings of SPIE, San Diego, USA, 2001).

Anderson, P.

C. Welnak, P. Anderson, M. Khan, S. Singh, and F. Cerrina. Recent developments in SHADOW. Rev. Sci. Instrum.63, 865–868 (1992).
[Crossref]

Aristov, V.

V. Aristovet al. X-ray refractive planar lens with minimized absorption. Appl. Phys. Lett.77, 4058–4060 (2000).
[Crossref]

Atchison, D. A.

G. Smith and D. A. Atchison. The Eye and Visual Optical Instruments (ed. C. U. Press) (1997).

Beguiristain, H. R.

J. T. Cremer, M. A. Piestrup, H. R. Beguiristain, and C. K. Gary. Cylindrical compound refractive x-ray lenses using plastic substrates. Rev. Sci. Instrum.70, 3545–3548 (1999).
[Crossref]

M. A. Piestrup, J. T. Cremer, H. R. Beguiristain, C. K. Gary, and R. H. Pantell. Two-dimensional x-ray focusing from compound lenses made of plastic. Rev. Sci. Instrum.71, 4375–4379 (2000).
[Crossref]

Blum, E. B.

G. Rakowsky, D. Lynch, E. B. Blum, and S. Krinsky. NSLS In-Vaccum Undulators and Mini-Beta Straights. Proceedings of the 2001 Particle Accelerator Conference 4, 2453–2455 (2001).

Buralli, D. A.

D. A. Buralli, G. M. Morris, and J. R. Rogers. Optical performance of holographic kinoforms. Appl. Opt.28, 976–983 (1989).
[Crossref] [PubMed]

Cerrina, F.

B. Lai and F. Cerrina. SHADOW: A Synchrotron Radiation Ray Tracing Program. Nuclear Instruments & Methods in Physics Research A 246, 337–341 (1986).

C. Welnak, G. J. Chen, and F. Cerrina. Shadow: A Synchrotron Radiation And X-Ray Optics Simulation Tool. Nuclear Instruments & Methods in Physics Research A 347, 344–347 (1994).

B. Lai, K. Chapman, and F. Cerrina. SHADOW: New Developments. Nuclear Instruments & Methods in Physics Research A 266, 544–549 (1988).

C. Welnak, P. Anderson, M. Khan, S. Singh, and F. Cerrina. Recent developments in SHADOW. Rev. Sci. Instrum.63, 865–868 (1992).
[Crossref]

Chapman, K.

B. Lai, K. Chapman, and F. Cerrina. SHADOW: New Developments. Nuclear Instruments & Methods in Physics Research A 266, 544–549 (1988).

Chen, G. J.

C. Welnak, G. J. Chen, and F. Cerrina. Shadow: A Synchrotron Radiation And X-Ray Optics Simulation Tool. Nuclear Instruments & Methods in Physics Research A 347, 344–347 (1994).

Chevallier, P.

P. Dhez, P. Chevallier, T. B. Lucatorto, and C. Tarrio. Instrumental aspects of x-ray microbeams in the range above 1 keV. Rev. Sci. Instrum.70, 1907–1920 (1999).
[Crossref]

Cremer, J. T.

M. A. Piestrup, J. T. Cremer, H. R. Beguiristain, C. K. Gary, and R. H. Pantell. Two-dimensional x-ray focusing from compound lenses made of plastic. Rev. Sci. Instrum.71, 4375–4379 (2000).
[Crossref]

J. T. Cremer, M. A. Piestrup, H. R. Beguiristain, and C. K. Gary. Cylindrical compound refractive x-ray lenses using plastic substrates. Rev. Sci. Instrum.70, 3545–3548 (1999).
[Crossref]

David, C.

B. Nohammer, J. Hoszowska, A. K. Freund, and C. David. Diamond planar refractive lenses for third and fourth generation x-ray sources. J. Sync. Rad.10, 168–171 (2003).
[Crossref]

Dhez, P.

P. Dhez, P. Chevallier, T. B. Lucatorto, and C. Tarrio. Instrumental aspects of x-ray microbeams in the range above 1 keV. Rev. Sci. Instrum.70, 1907–1920 (1999).
[Crossref]

Freund, A. K.

B. Nohammer, J. Hoszowska, A. K. Freund, and C. David. Diamond planar refractive lenses for third and fourth generation x-ray sources. J. Sync. Rad.10, 168–171 (2003).
[Crossref]

Gähler, R.

R. Gähler, J. Kalus, and W. Mampe. An optical instrument for the search of a neutron charge. J. Phys. E13, 546–548 (1980).
[Crossref]

Gary, C. K.

J. T. Cremer, M. A. Piestrup, H. R. Beguiristain, and C. K. Gary. Cylindrical compound refractive x-ray lenses using plastic substrates. Rev. Sci. Instrum.70, 3545–3548 (1999).
[Crossref]

M. A. Piestrup, J. T. Cremer, H. R. Beguiristain, C. K. Gary, and R. H. Pantell. Two-dimensional x-ray focusing from compound lenses made of plastic. Rev. Sci. Instrum.71, 4375–4379 (2000).
[Crossref]

Hayashi, H.

S. Suehiro, H. Miyaji, and H. Hayashi. Refractive lens for X-ray focus. Nature352, 385–386 (1991).
[Crossref]

Hecht, E.

E. Hecht and A. Zajac. Optics (ed. Addison-Wesley) (, 1979).

Hignette, O.

O. Hignetteet al. in X-Ray Micro- and Nano- Focusing: Applications and Techniques II (ed. McNulty) 105–116 (SPIE, San Diego, 2001).

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, and J. A. J. Jordan. IBM J. Res. Dev.13, 150 (1969).
[Crossref]

Hoszowska, J.

B. Nohammer, J. Hoszowska, A. K. Freund, and C. David. Diamond planar refractive lenses for third and fourth generation x-ray sources. J. Sync. Rad.10, 168–171 (2003).
[Crossref]

Ice, G. E.

G. E. Ice. Microbeam-Forming Methods for Synchrotron Radiation. X-Ray Spectrometry26, 315–326 (1997).
[Crossref]

Jordan, J. A. J.

L. B. Lesem, P. M. Hirsch, and J. A. J. Jordan. IBM J. Res. Dev.13, 150 (1969).
[Crossref]

Kalus, J.

R. Gähler, J. Kalus, and W. Mampe. An optical instrument for the search of a neutron charge. J. Phys. E13, 546–548 (1980).
[Crossref]

Khan, M.

C. Welnak, P. Anderson, M. Khan, S. Singh, and F. Cerrina. Recent developments in SHADOW. Rev. Sci. Instrum.63, 865–868 (1992).
[Crossref]

Kirz, J.

J. Kirz. Phase Zone Plates for X-rays and the Extreme UV. J. Opt. Soc. Am.64 (1974).
[Crossref]

Kohn, V.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler. A compound refractive lens for focusing high-energy X-rays. Nature384, 49–51 (1996).
[Crossref]

Krinsky, S.

G. Rakowsky, D. Lynch, E. B. Blum, and S. Krinsky. NSLS In-Vaccum Undulators and Mini-Beta Straights. Proceedings of the 2001 Particle Accelerator Conference 4, 2453–2455 (2001).

Lai, B.

B. Lai and F. Cerrina. SHADOW: A Synchrotron Radiation Ray Tracing Program. Nuclear Instruments & Methods in Physics Research A 246, 337–341 (1986).

B. Lai, K. Chapman, and F. Cerrina. SHADOW: New Developments. Nuclear Instruments & Methods in Physics Research A 266, 544–549 (1988).

Lengeler, B.

B. Lengeler, J. Tümmler, A. Snigirev, I. Snigireva, and C. Raven. Transmission and gain of singly and doubly focusing refractive x-ray lenses. Journal Of Applied Physics84, 5855–5861 (1998).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler. A compound refractive lens for focusing high-energy X-rays. Nature384, 49–51 (1996).
[Crossref]

B. Lengeleret al. A microscope for hard x rays based on parabolic refractive lenses. Appl. Phys. Lett.4, 3924–3926 (1999).
[Crossref]

B. Lengeleret al. Imaging by parabolic refractive lenses in the hard X-ray range. J. Sync. Rad.6, 1153–1167 (1999).
[Crossref]

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, and J. A. J. Jordan. IBM J. Res. Dev.13, 150 (1969).
[Crossref]

Lucatorto, T. B.

P. Dhez, P. Chevallier, T. B. Lucatorto, and C. Tarrio. Instrumental aspects of x-ray microbeams in the range above 1 keV. Rev. Sci. Instrum.70, 1907–1920 (1999).
[Crossref]

Lynch, D.

D. Lynch and G. Rakowsky. Mechanical Design of NSLS Mini-gap Undulator (MGU). 2nd Int. Workshop on Mech. Eng. Design of Sync. Rad. Equip. and Instrum. (MEDSI02) (2002).

G. Rakowsky, D. Lynch, E. B. Blum, and S. Krinsky. NSLS In-Vaccum Undulators and Mini-Beta Straights. Proceedings of the 2001 Particle Accelerator Conference 4, 2453–2455 (2001).

Mampe, W.

R. Gähler, J. Kalus, and W. Mampe. An optical instrument for the search of a neutron charge. J. Phys. E13, 546–548 (1980).
[Crossref]

Miyaji, H.

S. Suehiro, H. Miyaji, and H. Hayashi. Refractive lens for X-ray focus. Nature352, 385–386 (1991).
[Crossref]

Moreno, V.

V. Moreno, J. F. Roman, and J. R. Salgueiro. High efficiency diffractive lenses: Deduction of kinoform profile. Am. J. Phys.65, 556–562 (1997).
[Crossref]

Morris, G. M.

D. A. Buralli, G. M. Morris, and J. R. Rogers. Optical performance of holographic kinoforms. Appl. Opt.28, 976–983 (1989).
[Crossref] [PubMed]

Nohammer, B.

B. Nohammer, J. Hoszowska, A. K. Freund, and C. David. Diamond planar refractive lenses for third and fourth generation x-ray sources. J. Sync. Rad.10, 168–171 (2003).
[Crossref]

Pantell, R. H.

M. A. Piestrup, J. T. Cremer, H. R. Beguiristain, C. K. Gary, and R. H. Pantell. Two-dimensional x-ray focusing from compound lenses made of plastic. Rev. Sci. Instrum.71, 4375–4379 (2000).
[Crossref]

Piestrup, M. A.

M. A. Piestrup, J. T. Cremer, H. R. Beguiristain, C. K. Gary, and R. H. Pantell. Two-dimensional x-ray focusing from compound lenses made of plastic. Rev. Sci. Instrum.71, 4375–4379 (2000).
[Crossref]

J. T. Cremer, M. A. Piestrup, H. R. Beguiristain, and C. K. Gary. Cylindrical compound refractive x-ray lenses using plastic substrates. Rev. Sci. Instrum.70, 3545–3548 (1999).
[Crossref]

Rakowsky, G.

D. Lynch and G. Rakowsky. Mechanical Design of NSLS Mini-gap Undulator (MGU). 2nd Int. Workshop on Mech. Eng. Design of Sync. Rad. Equip. and Instrum. (MEDSI02) (2002).

G. Rakowsky, D. Lynch, E. B. Blum, and S. Krinsky. NSLS In-Vaccum Undulators and Mini-Beta Straights. Proceedings of the 2001 Particle Accelerator Conference 4, 2453–2455 (2001).

Raven, C.

B. Lengeler, J. Tümmler, A. Snigirev, I. Snigireva, and C. Raven. Transmission and gain of singly and doubly focusing refractive x-ray lenses. Journal Of Applied Physics84, 5855–5861 (1998).
[Crossref]

Rogers, J. R.

D. A. Buralli, G. M. Morris, and J. R. Rogers. Optical performance of holographic kinoforms. Appl. Opt.28, 976–983 (1989).
[Crossref] [PubMed]

Roman, J. F.

V. Moreno, J. F. Roman, and J. R. Salgueiro. High efficiency diffractive lenses: Deduction of kinoform profile. Am. J. Phys.65, 556–562 (1997).
[Crossref]

Salgueiro, J. R.

V. Moreno, J. F. Roman, and J. R. Salgueiro. High efficiency diffractive lenses: Deduction of kinoform profile. Am. J. Phys.65, 556–562 (1997).
[Crossref]

Schroer, C. G.

C. G. Schroeret al. High resolution imaging and lithography with hard x rays using parabolic compund refractive lenses. Rev. Sci. Instrum.73, 1640–1642 (2002).
[Crossref]

C. G. Schroeret al. Nanofocusing parabolic refractive x-ray lenses. Appl. Phys. Lett.82, 1485–1487 (2003).
[Crossref]

Singh, S.

C. Welnak, P. Anderson, M. Khan, S. Singh, and F. Cerrina. Recent developments in SHADOW. Rev. Sci. Instrum.63, 865–868 (1992).
[Crossref]

Smith, G.

G. Smith and D. A. Atchison. The Eye and Visual Optical Instruments (ed. C. U. Press) (1997).

Snigirev, A.

B. Lengeler, J. Tümmler, A. Snigirev, I. Snigireva, and C. Raven. Transmission and gain of singly and doubly focusing refractive x-ray lenses. Journal Of Applied Physics84, 5855–5861 (1998).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler. A compound refractive lens for focusing high-energy X-rays. Nature384, 49–51 (1996).
[Crossref]

Snigireva, I.

I. Snigirevaet al. Holographic X-ray optical elements: transition between refraction and diffraction. Nuclear Instruments & Methods in Physics Research A467–468, 982–985 (2001).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler. A compound refractive lens for focusing high-energy X-rays. Nature384, 49–51 (1996).
[Crossref]

B. Lengeler, J. Tümmler, A. Snigirev, I. Snigireva, and C. Raven. Transmission and gain of singly and doubly focusing refractive x-ray lenses. Journal Of Applied Physics84, 5855–5861 (1998).
[Crossref]

I. Snigirevaet al. in X-Ray Micro- and Nano- Focusing: Applications and Techniques II (Proceedings of SPIE, San Diego, USA, 2001).

Stein, A.

A. Steinet al. Diffractive x-ray optics using production fabrication methods. J.Vac.Sci. Technol. B21, 1071–1023 (2003).
[Crossref]

Suehiro, S.

S. Suehiro, H. Miyaji, and H. Hayashi. Refractive lens for X-ray focus. Nature352, 385–386 (1991).
[Crossref]

Tarrio, C.

P. Dhez, P. Chevallier, T. B. Lucatorto, and C. Tarrio. Instrumental aspects of x-ray microbeams in the range above 1 keV. Rev. Sci. Instrum.70, 1907–1920 (1999).
[Crossref]

Tümmler, J.

B. Lengeler, J. Tümmler, A. Snigirev, I. Snigireva, and C. Raven. Transmission and gain of singly and doubly focusing refractive x-ray lenses. Journal Of Applied Physics84, 5855–5861 (1998).
[Crossref]

Welnak, C.

C. Welnak, P. Anderson, M. Khan, S. Singh, and F. Cerrina. Recent developments in SHADOW. Rev. Sci. Instrum.63, 865–868 (1992).
[Crossref]

C. Welnak, G. J. Chen, and F. Cerrina. Shadow: A Synchrotron Radiation And X-Ray Optics Simulation Tool. Nuclear Instruments & Methods in Physics Research A 347, 344–347 (1994).

Yun, W.

W. Yunet al. Nanometer focusing of hard x rays by phase zone plates. Rev. Sci. Instrum.70, 2238–2241 (1999).
[Crossref]

Zajac, A.

E. Hecht and A. Zajac. Optics (ed. Addison-Wesley) (, 1979).

Other (31)

O. Hignetteet al. in X-Ray Micro- and Nano- Focusing: Applications and Techniques II (ed. McNulty) 105–116 (SPIE, San Diego, 2001).

W. Yunet al. Nanometer focusing of hard x rays by phase zone plates. Rev. Sci. Instrum.70, 2238–2241 (1999).
[Crossref]

C. G. Schroeret al. Nanofocusing parabolic refractive x-ray lenses. Appl. Phys. Lett.82, 1485–1487 (2003).
[Crossref]

G. E. Ice. Microbeam-Forming Methods for Synchrotron Radiation. X-Ray Spectrometry26, 315–326 (1997).
[Crossref]

P. Dhez, P. Chevallier, T. B. Lucatorto, and C. Tarrio. Instrumental aspects of x-ray microbeams in the range above 1 keV. Rev. Sci. Instrum.70, 1907–1920 (1999).
[Crossref]

L. B. Lesem, P. M. Hirsch, and J. A. J. Jordan. IBM J. Res. Dev.13, 150 (1969).
[Crossref]

J. Kirz. Phase Zone Plates for X-rays and the Extreme UV. J. Opt. Soc. Am.64 (1974).
[Crossref]

R. Gähler, J. Kalus, and W. Mampe. An optical instrument for the search of a neutron charge. J. Phys. E13, 546–548 (1980).
[Crossref]

S. Suehiro, H. Miyaji, and H. Hayashi. Refractive lens for X-ray focus. Nature352, 385–386 (1991).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler. A compound refractive lens for focusing high-energy X-rays. Nature384, 49–51 (1996).
[Crossref]

M. A. Piestrup, J. T. Cremer, H. R. Beguiristain, C. K. Gary, and R. H. Pantell. Two-dimensional x-ray focusing from compound lenses made of plastic. Rev. Sci. Instrum.71, 4375–4379 (2000).
[Crossref]

J. T. Cremer, M. A. Piestrup, H. R. Beguiristain, and C. K. Gary. Cylindrical compound refractive x-ray lenses using plastic substrates. Rev. Sci. Instrum.70, 3545–3548 (1999).
[Crossref]

C. G. Schroeret al. High resolution imaging and lithography with hard x rays using parabolic compund refractive lenses. Rev. Sci. Instrum.73, 1640–1642 (2002).
[Crossref]

B. Lengeleret al. A microscope for hard x rays based on parabolic refractive lenses. Appl. Phys. Lett.4, 3924–3926 (1999).
[Crossref]

B. Lengeleret al. Imaging by parabolic refractive lenses in the hard X-ray range. J. Sync. Rad.6, 1153–1167 (1999).
[Crossref]

I. Snigirevaet al. Holographic X-ray optical elements: transition between refraction and diffraction. Nuclear Instruments & Methods in Physics Research A467–468, 982–985 (2001).
[Crossref]

V. Aristovet al. X-ray refractive planar lens with minimized absorption. Appl. Phys. Lett.77, 4058–4060 (2000).
[Crossref]

B. Nohammer, J. Hoszowska, A. K. Freund, and C. David. Diamond planar refractive lenses for third and fourth generation x-ray sources. J. Sync. Rad.10, 168–171 (2003).
[Crossref]

D. A. Buralli, G. M. Morris, and J. R. Rogers. Optical performance of holographic kinoforms. Appl. Opt.28, 976–983 (1989).
[Crossref] [PubMed]

B. Lengeler, J. Tümmler, A. Snigirev, I. Snigireva, and C. Raven. Transmission and gain of singly and doubly focusing refractive x-ray lenses. Journal Of Applied Physics84, 5855–5861 (1998).
[Crossref]

E. Hecht and A. Zajac. Optics (ed. Addison-Wesley) (, 1979).

V. Moreno, J. F. Roman, and J. R. Salgueiro. High efficiency diffractive lenses: Deduction of kinoform profile. Am. J. Phys.65, 556–562 (1997).
[Crossref]

G. Smith and D. A. Atchison. The Eye and Visual Optical Instruments (ed. C. U. Press) (1997).

C. Welnak, G. J. Chen, and F. Cerrina. Shadow: A Synchrotron Radiation And X-Ray Optics Simulation Tool. Nuclear Instruments & Methods in Physics Research A 347, 344–347 (1994).

B. Lai, K. Chapman, and F. Cerrina. SHADOW: New Developments. Nuclear Instruments & Methods in Physics Research A 266, 544–549 (1988).

B. Lai and F. Cerrina. SHADOW: A Synchrotron Radiation Ray Tracing Program. Nuclear Instruments & Methods in Physics Research A 246, 337–341 (1986).

C. Welnak, P. Anderson, M. Khan, S. Singh, and F. Cerrina. Recent developments in SHADOW. Rev. Sci. Instrum.63, 865–868 (1992).
[Crossref]

G. Rakowsky, D. Lynch, E. B. Blum, and S. Krinsky. NSLS In-Vaccum Undulators and Mini-Beta Straights. Proceedings of the 2001 Particle Accelerator Conference 4, 2453–2455 (2001).

D. Lynch and G. Rakowsky. Mechanical Design of NSLS Mini-gap Undulator (MGU). 2nd Int. Workshop on Mech. Eng. Design of Sync. Rad. Equip. and Instrum. (MEDSI02) (2002).

A. Steinet al. Diffractive x-ray optics using production fabrication methods. J.Vac.Sci. Technol. B21, 1071–1023 (2003).
[Crossref]

I. Snigirevaet al. in X-Ray Micro- and Nano- Focusing: Applications and Techniques II (Proceedings of SPIE, San Diego, USA, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Hard x-ray Fresnel lens. The profile is elliptical and steps can be seen where material that originally contributed to 2π phase-shifts has been removed. Inset: Schematic of Fresnel lens showing the length of the phase-shifting region.

Fig. 2.
Fig. 2.

A single planar concave lens. Incident parallel x-rays are brought to a focus at (F,0) due to the difference between the refractive indices of the lens medium and air/vacuum interface.

Fig. 3.
Fig. 3.

Elliptical and parabolic profiles with the same radii of curvature at (0,0). The elliptical curve reaches a maximum at 7.5 cm, which determines the aperture of the system.

Fig. 4.
Fig. 4.

(left) - Ray-tracing simulations of a solid single-element refractive lens. (right) - Histogram of a vertical slice through the line focus

Fig. 5.
Fig. 5.

Copper fluorescence Knife-edge scan taken on the refractive lens (shown in Fig.1).

Metrics