Abstract

The magnetic field produced by the human heart carries valuable information for medical research, as well as for diagnostics and screening for disease. We have developed an optical method that allows us to produce movies of the temporal dynamics of the human cardiomagnetic field map. While such movies have been generated before with the help of SQUID magnetometers, our technique operates at room temperature and promises substantial economic advantages.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. M. Baule, R. McFee, �??Detection of the magnetic .eld of the heart,�?? Am. Heart J. 66, 95-96 (1963).
    [CrossRef] [PubMed]
  2. D. Cohen, E. A. Edelsack, J. E. Zimmerman, �??Magnetocardiograms taken inside a shielded room with a superconducting point-contact magnetometer,�?? Appl. Phys. Lett. 16, 278-280 (1970).
    [CrossRef]
  3. W. Andra, H. Nowak (eds.), Magnetism in Medicine, (Wiley-VCH, Berlin 1998).
  4. Yu. A. Kholodov, A. N. Kozlov, A. M. Gorbach, Magnetic fields of biological objects, (Nauka Publisher, Moscow 1990).
  5. I. Tavarozzi, S. Comani, C. Del Gratta, G. L. Romani, S. Di Luzio, D. Brisinda, S. Gallina, M. Zimarino, R. Fenici, R. De Caterina, �??Magnetocardiography: current status and perspectives. Part I: Physical principles and instrumentation,�?? Ital. Heart J. 3, 75-85 (2002).
    [PubMed]
  6. I. Tavarozzi, S. Comani, C. Del Gratta, S. Di Luzio, G. L. Romani, S. Gallina, M. Zimarino, D. Brisinda, R. Fenici, R. De Caterina, �??Magnetocardiography: current status and perspectives. Part II: Clinical applications,�?? Ital. Heart J. 3, 151-165 (2002).
    [PubMed]
  7. A. L. Bloom, �??Principles of operation of the Rubidium vapor magnetometer,�?? Appl. Opt. 1, 61-68 (1962).
    [CrossRef]
  8. C. A.olderbach, M. Stahler, S. Knappe, R. Wynands, �??An all-optical, high-sensitivity magnetic gradiometer,�?? Appl. Phys. B 75, 605-612 (2002).
    [CrossRef]
  9. G. Bison, R. Wynands, A. Weis, �??A laser-pumped magnetometer for the mapping of human cardio-magnetic fields,�?? Appl. Phys. B 76, 325-328 (2003).
    [CrossRef]
  10. K. Sternickel, A. E.ern, K. Lehnertz, T. Schreiber, P. David, �??Nonlinear noise reduction using reference data,�?? Phys. Rev. E 63, 036209-1-4 (2001).
    [CrossRef]
  11. Denoising performed courtesy of K. Sternickel (CardioMag Imaging, Inc., Schenectady, USA).
  12. M. N. Livanov, A. N. Kozlov, S. E. Sinelnikova, Ju. A. Kholodov, V. P. Markin, A. M. Gorbach, A. V. Korinewsky, �??Record of the human magnetocardiogram by the quantum gradiometer with optical pumping,�?? Adv. Cardiol. 28, 78-80 (1981).
    [PubMed]
  13. I. O. Fomin, S. E. Sinelnikova, A. N. Koslov, V. N. Uranov, V. A. Gorshkov, �??On recording the heart's magnetic field,�?? Kardiologija 23, 66-68 (1983).
  14. P. van Leeuwen, B. Hailer, S. Lange, D. Donker, D. Gronemeyer, �??Spatial and temporal changes during the QT-interval in the magnetic field of patients with coronary artery disease,�?? Biomed. Tech. 44, 139-142 (1999).
    [CrossRef]

Adv. Cardiol.

M. N. Livanov, A. N. Kozlov, S. E. Sinelnikova, Ju. A. Kholodov, V. P. Markin, A. M. Gorbach, A. V. Korinewsky, �??Record of the human magnetocardiogram by the quantum gradiometer with optical pumping,�?? Adv. Cardiol. 28, 78-80 (1981).
[PubMed]

Am. Heart J.

G. M. Baule, R. McFee, �??Detection of the magnetic .eld of the heart,�?? Am. Heart J. 66, 95-96 (1963).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

C. A.olderbach, M. Stahler, S. Knappe, R. Wynands, �??An all-optical, high-sensitivity magnetic gradiometer,�?? Appl. Phys. B 75, 605-612 (2002).
[CrossRef]

G. Bison, R. Wynands, A. Weis, �??A laser-pumped magnetometer for the mapping of human cardio-magnetic fields,�?? Appl. Phys. B 76, 325-328 (2003).
[CrossRef]

Appl. Phys. Lett.

D. Cohen, E. A. Edelsack, J. E. Zimmerman, �??Magnetocardiograms taken inside a shielded room with a superconducting point-contact magnetometer,�?? Appl. Phys. Lett. 16, 278-280 (1970).
[CrossRef]

Biomed. Tech.

P. van Leeuwen, B. Hailer, S. Lange, D. Donker, D. Gronemeyer, �??Spatial and temporal changes during the QT-interval in the magnetic field of patients with coronary artery disease,�?? Biomed. Tech. 44, 139-142 (1999).
[CrossRef]

Ital. Heart J.

I. Tavarozzi, S. Comani, C. Del Gratta, G. L. Romani, S. Di Luzio, D. Brisinda, S. Gallina, M. Zimarino, R. Fenici, R. De Caterina, �??Magnetocardiography: current status and perspectives. Part I: Physical principles and instrumentation,�?? Ital. Heart J. 3, 75-85 (2002).
[PubMed]

I. Tavarozzi, S. Comani, C. Del Gratta, S. Di Luzio, G. L. Romani, S. Gallina, M. Zimarino, D. Brisinda, R. Fenici, R. De Caterina, �??Magnetocardiography: current status and perspectives. Part II: Clinical applications,�?? Ital. Heart J. 3, 151-165 (2002).
[PubMed]

Kardiologija

I. O. Fomin, S. E. Sinelnikova, A. N. Koslov, V. N. Uranov, V. A. Gorshkov, �??On recording the heart's magnetic field,�?? Kardiologija 23, 66-68 (1983).

Phys. Rev. E

K. Sternickel, A. E.ern, K. Lehnertz, T. Schreiber, P. David, �??Nonlinear noise reduction using reference data,�?? Phys. Rev. E 63, 036209-1-4 (2001).
[CrossRef]

Other

Denoising performed courtesy of K. Sternickel (CardioMag Imaging, Inc., Schenectady, USA).

W. Andra, H. Nowak (eds.), Magnetism in Medicine, (Wiley-VCH, Berlin 1998).

Yu. A. Kholodov, A. N. Kozlov, A. M. Gorbach, Magnetic fields of biological objects, (Nauka Publisher, Moscow 1990).

Supplementary Material (2)

» Media 1: MOV (1532 KB)     
» Media 2: MOV (2547 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic setup of the optically-pumped Mx -magnetometer in the phaselocked mode. The voltage-controlled oscillator (VCO) is locked to the phase signal (dashed line)

Fig. 2.
Fig. 2.

Time series of the magnetocardiogram of one of the authors. (a) Output data of the gradiometer. (b) The data filtered with a state-of-the-art denoising algorithm [10, 11]. This filtering procedure was not employed for any of the other results in this report.

Fig. 3.
Fig. 3.

All 63 MCGs (each averaged over 100–120 beats) taken on the grid above the chest, plotted together in order to show the range of signal amplitudes and shapes. The characteristic MCG features are by convention designated by the letters P, Q, R, S, and T.

Fig. 4.
Fig. 4.

(QRS dynamics, Left and Center (1.5 MB); T dynamics, Right (2.4 MB)) Selected video frames taken from the movies accompaying this publication. The red area corresponds to maximum field pointing towards the chest (maximum ΔBz ), blue to the strongest field emerging from the chest (minimum ΔBz ). Within each movie, all frames have the same color scale and are oriented such that the top right corner corresponds to the grid point closest to the left shoulder. The black line connects the local maximum and minimum in each frame. LEFT: Field distribution at the Q dip. CENTER: Field distribution at the R peak. RIGHT: Field distribution at the crest of the T wave (different color scale).

Fig. 5.
Fig. 5.

Orientation of the line pointing from the local field minimum to the local field maximum, called the magnetic-field-map (MFM) orientation in [14]. Angles are shown only for those time intervals where both field minimum and maximum clearly stand out against the noise level. An angle of 0° corresponds to a line pointing towards the right of the frame, with angles increasing in the counter-clockwise direction.

Metrics