Abstract

In this article we present a detailed discussion of noise sources in Fourier Domain Optical Coherence Tomography (FDOCT) setups. The performance of FDOCT with charge coupled device (CCD) cameras is compared to current standard time domain OCT systems. We describe how to measure sensitivity in the case of FDOCT and confirm the theoretically obtained values. It is shown that FDOCT systems have a large sensitivity advantage and allow for sensitivities well above 80dB, even in situations with low light levels and high speed detection.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, �??Measurement of intraocular distances by backscattering spectral interferometry,�?? Opt.Commun. 117, 43-48,(1995).
    [CrossRef]
  2. G. Häusler, M.W. Lindner, �??Coherence radar and spectral radar �?? new tools for dermatological diagnosis,�?? J. Biomed. Opt. 3, 21-31(1998).
    [CrossRef]
  3. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, �??In vivo human retinal imaging by fourier domain optical coherence tomography,�?? J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  4. M. Wojtkowski, T. Bajraszewski, P. Targowski, A. Kowalczyk, �??Real-time in-vivo ophthalmic imaging by ultrafast spectral interferometry,�?? Proc. SPIE 4956, 4956-11 (2003).
    [CrossRef]
  5. J. W. Goodman, Statistical Optics (John Wiley & Sons, 1985).
  6. R. V. Sorin, D. M. Baney, �??A simple intensity noise reduction technique for optical low coherence reflectometry,�?? IEEE Photonics Technol. Lett. 4, 1404 �?? 1406, (1992).
    [CrossRef]
  7. A. M. Rollins, J. A. Izatt, �??Optimal interferometer designs for optical coherence tomography,�?? Opt. Lett. 24, 1484-1486 (1999).
    [CrossRef]
  8. A. G. Podoleanou, �??Unbalanced versus balanced operation in an optical coherence tomography system,�?? Appl. Opt. 39, 173-182 (2000).
    [CrossRef]
  9. H. Saint-Jalmes, M. Lebec, E. Beaurepierre, A. Dubois, A. C. Boccara, in Handbook of Optical Coherence Tomography , B. Bouma, E. Tearney, eds., (Marcel Dekker, Inc. 2002) Chap. 11
  10. R. Bracewell, The Fourier Transform and Its Applications, (McGraw-Hill 1965).
  11. A. M. Rollins, S. Yazdanfar, M. D. Kulkarni, R. Ung-Arunyawee, J. A. Izatt, "In vivo video rate optical coherence tomography,�?? Opt. Express 3, 219-229 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219</a>.
    [CrossRef] [PubMed]
  12. R. Leitgeb, L. Schmetterer, C. K. Hitzenberger, M. Sticker, M. Wojtkowski, and A. F. Fercher, "Flow Measurements by Frequency Domain Optical Coherence Tomography,�?? Proc. SPIE 4619, 16-21 (2002).
    [CrossRef]

Appl. Opt.

IEEE Photonics Technol. Lett.

R. V. Sorin, D. M. Baney, �??A simple intensity noise reduction technique for optical low coherence reflectometry,�?? IEEE Photonics Technol. Lett. 4, 1404 �?? 1406, (1992).
[CrossRef]

J. Biomed. Opt.

G. Häusler, M.W. Lindner, �??Coherence radar and spectral radar �?? new tools for dermatological diagnosis,�?? J. Biomed. Opt. 3, 21-31(1998).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, �??In vivo human retinal imaging by fourier domain optical coherence tomography,�?? J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt.Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, �??Measurement of intraocular distances by backscattering spectral interferometry,�?? Opt.Commun. 117, 43-48,(1995).
[CrossRef]

Proc. SPIE

R. Leitgeb, L. Schmetterer, C. K. Hitzenberger, M. Sticker, M. Wojtkowski, and A. F. Fercher, "Flow Measurements by Frequency Domain Optical Coherence Tomography,�?? Proc. SPIE 4619, 16-21 (2002).
[CrossRef]

M. Wojtkowski, T. Bajraszewski, P. Targowski, A. Kowalczyk, �??Real-time in-vivo ophthalmic imaging by ultrafast spectral interferometry,�?? Proc. SPIE 4956, 4956-11 (2003).
[CrossRef]

Other

J. W. Goodman, Statistical Optics (John Wiley & Sons, 1985).

H. Saint-Jalmes, M. Lebec, E. Beaurepierre, A. Dubois, A. C. Boccara, in Handbook of Optical Coherence Tomography , B. Bouma, E. Tearney, eds., (Marcel Dekker, Inc. 2002) Chap. 11

R. Bracewell, The Fourier Transform and Its Applications, (McGraw-Hill 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

FDOCT Signal amplitudes for various optical depths after Fourier transform.

Fig. 2.
Fig. 2.

Different OCT setups, with Optical Delay Line ODL, light source LD, photodiode PD, sample S, detector array DA. a) FDOCT, b) TDOCT.

Fig. 3.
Fig. 3.

a) FDOCT signal of a mirror and filter D=2 in the sample arm. b) The same signal with reference arm signal subtraction. The remaining DC peak in the center is due to the sample arm DC power.

Fig. 4.
Fig. 4.

The red line shows the theoretical sensitivity for FDOCT according to Eq. (6) with γr=0.15, γs=0.07, ρ=0.19, η =0.4, P0=175µW,τ=1ms, σCCD=250e-(at room temperature), FWC=400 ke- The blue line is the TDOCT sensitivity for an unbalanced configuration, with γrs=0.25, B=113 kHz, NEC=0,5pA/√Hz. The squared dots are the actual measured system sensitivities for our FDOCT system.

Tables (1)

Tables Icon

Table 1. Detector signals and noise sources for FD and TDOCT systems.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

K ( n ) = ρ η τ h v n · P ( v n ) [ γ s R s + γ r R r + 2 γ r γ s R r R s cos ( 4 π v n Δ z c + φ ) ] , n = 0 , , N 1 ,
P ( v n ) = P ( v 0 ) exp [ ( 2 ln 2 ( v n v 0 ) Δ v FWHM ) 2 ] .
P ( v 0 ) DFT S ( τ ) Peak = π 4 ln 2 Δ v FWHM ( n ) 2 N P ( v 0 ) = P 0 2 N ,
Δ v FWHM ( n ) DFT Δ τ FWHM ( h ) = 4 ln 2 π N Δ v FWMN ( n ) .
S ( τ ) Peak FDOCT = ρ η τ h v 0 P 0 N γ r γ s R r R s .
FDOCT = 1 N ( ρ η τ h v 0 P 0 ) 2 γ s γ r R r ρ η τ h v 0 · P 0 N γ r R r [ 1 + ( 1 + Π 2 ) 2 ρ η h v 0 · P 0 N γ r R r N Δ v eff ] + σ receiver 2 .
TDOCT = 1 B 2 S 2 γ s γ r P 0 2 R R S P 0 γ r R R ( 2 q + S P 0 γ r R R 1 + Π 2 Δ v eff ) + ( NEC ) 2 .
B = 2 v g l c = 2 l c ( scanning range ) τ = N Δ τ FWHM ( h ) 1 2 τ = π 4 ln 4 N m 1 τ ,

Metrics