Abstract

A novel nonlinear perturbation model was successfully applied to the in vivo characterization of breast lesions (cysts and tumors) after detection by multi-wavelength time-resolved optical mammography. The model relies on the method of Padé approximants and consists in a nonlinear approximation of time-resolved transmittance curves in the presence of an inclusion. Tissue constituents (blood volume, blood oxygen saturation, lipids and water content) were estimated for both the bulk and the lesion areas. Cysts were reported to have high water content while tumors showed increased blood content as compared to bulk tissue.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E.A.Sickles, �??Breast cancer detection with transillumination and mammography,�?? Am. J. Roentg. 142, 841�??844 (1984).
  2. B. Monsees, J.M. Destouet and D. Gersell, �??Light scan evaluation of nonpalpable breast lesions,�?? Radiology 163, 467-470 (1987).
    [PubMed]
  3. S.B. Colak, M.B. van der Mark, G.W.'t Hooft, J.H. Hoogenraad, E.S. van der Linden, and F.A. Kuijpers, �??Clinical optical tomography and NIR spectroscopy for breast cancer detection,�?? IEEE J. Sel. Top. Quant. Electron. 5, 1143-1158 (1999).
    [CrossRef]
  4. M.A. Franceschini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Mantulin, M. Seeber, P.M. Schlag, and M. Kaschke, �??Frequency-domain techniques enhance optical mammography: initial clinical results,�?? Proc. Natl. Acad. Sci. 94, 6468-6473 (1997).
    [CrossRef] [PubMed]
  5. K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, �??Contrast Features of Breast Cancer in Frequency-Domain Laser Scanning Mammography,�?? J. Biomed. Opt. 3, 129-136 (1998).
    [CrossRef] [PubMed]
  6. L. Götz, S. H. Heywang-Köbrunner, O. Schütz, and H. Siebold, �??Optical mammography on preoperative patients (Optische Mammographie an präoperativen Patientinnen),�?? Akt. Radiol. 8, 31-33 (1998).
  7. B.W. Pogue, S.P. Poplack, T.O. McBride, W.A. Wells, K.S. Osterman, U.L. Osterberg and K.D. Paulsen, �??Quantitative hemoglobin tomography with di.use near-infrared spectroscopy: Pilot results in the breast,�?? Radiology 218, 262-270 (2001).
  8. D. Grosenick, H. Wabnitz, H. Rinneberg, K.T. Moesta, and P.M. Schlag, �??Development of a time-domain optical mammograph and first in vivo applications,�?? Appl. Opt. 38, 2927-2943 (1999).
    [CrossRef]
  9. R. Cubeddu, G. M. Danesini, E.Giambattistelli, F. Messina, L. Pallaro, A. Pifferi, P. Taroni, and A. Torricelli, �??Time-resolved optical mammograph for clinical studies beyond 900 nm," in OSA Biomedical Topical Meetings, OSA Technical Digest, (Optical Society of America, Washington, D.C., 2002), pp. 674-676.
  10. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, �??Concurrent MRI and diffuse optical tomography of breast cancer after indocyanine green enhancement,�?? Proc. Nat. Acad. Sci. USA 97, 2767-2772 (2000).
    [CrossRef] [PubMed]
  11. V. Quaresima, S. J. Matcher, and M. Ferrari, �??Identification and quantification of intrinsic optical contrast for near-infrared mammography,�?? Photochem. Photobiol. 67, 4-14 (1998).
    [CrossRef] [PubMed]
  12. R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, �??Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,�?? Photochem. Photobiol. 72, 383-391 (2000).
    [PubMed]
  13. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, �??Spectroscopy enhances the information content of optical mammography,�?? J. Biomed. Opt. 7, 60-71 (2002).
    [CrossRef] [PubMed]
  14. T. Durduran, R. Choe, J. P. Pulver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A.G.Yodh, �??Bulk optical properties of healthy female breast tissue,�?? Phys. Med. Biol. 47, 2847-2861 (2002).
    [CrossRef] [PubMed]
  15. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, �??Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,�?? Neoplasia 2, 26-40 (2000).
    [CrossRef] [PubMed]
  16. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, �??Sources of absorption and scattering contrast for near-infrared optical mammography,�?? Acad. Radiol. 8, 211-218 (2001).
    [CrossRef] [PubMed]
  17. T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. �?sterberg, and K. D. Paulsen, �??Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,�?? J. Biomed. Opt. 7, 72-79 (2002).
    [CrossRef] [PubMed]
  18. S. Fantini, S. A. Walker, M.A. Franceschini, M. Kaschke, P.M. Schlag, and K.T. Moesta, �??Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,�?? Appl. Opt. 37, 1982-1989 (1998).
    [CrossRef]
  19. V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, �??Quantification of optical properties of a breast tumor using random walk theory,�?? J. Biomed. Opt. 7, 80-87 (2002).
    [CrossRef] [PubMed]
  20. G. Mitic, J. Kölzer, J. Otto, E. Piles, G. Sölkner, and W. Zinth, "Time-gated transillumination of biological tissues and tissuelike phantoms," Appl. Opt. 33, 6699-6710 (1994).
    [CrossRef] [PubMed]
  21. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, �??Imaging of optical inhomogeneities in highly diffusive media: discrimination between scattering and absorption contributions,�?? Appl. Phys. Lett. 69, 4162-4164 (1996).
    [CrossRef]
  22. J. C. Hebden, and S. R. Arridge, �??Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain,�?? Appl. Opt. 35, 6788-6796 (1996).
    [CrossRef] [PubMed]
  23. S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, �??Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,�?? Appl. Opt. 40, 4622-4632 (2001).
    [CrossRef]
  24. A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, and R. Nossal, �??Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,�?? Appl. Opt. 37, 1973-1981 (1998).
    [CrossRef]
  25. I. T. Gram, E. Funkhouser, and L. Tabar, �??The Tabar classification of mammographic parenchymal patterns,�?? Eur. J. Radiol. 24, 131-136 (1997).
    [CrossRef] [PubMed]
  26. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R Cubeddu, �??Experimental test of a perturbation model for time-resolved imaging in diffusive media,�?? Appl. Opt. (2003) in press.
    [CrossRef] [PubMed]
  27. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson and I. J. Bigio, �??Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,�?? Appl. Opt. 36, 949-957 (1997).
    [CrossRef] [PubMed]
  28. A. M. Nilsson, K. C. Sturesson, D. L. Liu and S. Andersson-Engels, �??Changes in spectral shape of tissue optical properties in conjuction with laser-induced thermotherapy,�?? Appl. Opt. 37, 1256-1267 (1998).
    [CrossRef]
  29. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess and W. W. Mantulin, �??Frequency domain optical mammography: edge effect corrections,�?? Med. Phys. 23, 149-156 (1996).
    [CrossRef] [PubMed]
  30. V. Chernomordik, D. Hattery, A. H. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and R. Cubeddu, �??Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,�?? Opt. Lett. 25, 951-953, (2000).
    [CrossRef]

Acad. Radiol. (1)

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, �??Sources of absorption and scattering contrast for near-infrared optical mammography,�?? Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Akt. Radiol. (1)

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, and H. Siebold, �??Optical mammography on preoperative patients (Optische Mammographie an präoperativen Patientinnen),�?? Akt. Radiol. 8, 31-33 (1998).

Am. J. Roentg. (1)

E.A.Sickles, �??Breast cancer detection with transillumination and mammography,�?? Am. J. Roentg. 142, 841�??844 (1984).

Appl. Opt. (9)

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R Cubeddu, �??Experimental test of a perturbation model for time-resolved imaging in diffusive media,�?? Appl. Opt. (2003) in press.
[CrossRef] [PubMed]

G. Mitic, J. Kölzer, J. Otto, E. Piles, G. Sölkner, and W. Zinth, "Time-gated transillumination of biological tissues and tissuelike phantoms," Appl. Opt. 33, 6699-6710 (1994).
[CrossRef] [PubMed]

A. M. Nilsson, K. C. Sturesson, D. L. Liu and S. Andersson-Engels, �??Changes in spectral shape of tissue optical properties in conjuction with laser-induced thermotherapy,�?? Appl. Opt. 37, 1256-1267 (1998).
[CrossRef]

J. C. Hebden, and S. R. Arridge, �??Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain,�?? Appl. Opt. 35, 6788-6796 (1996).
[CrossRef] [PubMed]

A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, and R. Nossal, �??Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,�?? Appl. Opt. 37, 1973-1981 (1998).
[CrossRef]

S. Fantini, S. A. Walker, M.A. Franceschini, M. Kaschke, P.M. Schlag, and K.T. Moesta, �??Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,�?? Appl. Opt. 37, 1982-1989 (1998).
[CrossRef]

D. Grosenick, H. Wabnitz, H. Rinneberg, K.T. Moesta, and P.M. Schlag, �??Development of a time-domain optical mammograph and first in vivo applications,�?? Appl. Opt. 38, 2927-2943 (1999).
[CrossRef]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson and I. J. Bigio, �??Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,�?? Appl. Opt. 36, 949-957 (1997).
[CrossRef] [PubMed]

S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, �??Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,�?? Appl. Opt. 40, 4622-4632 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, �??Imaging of optical inhomogeneities in highly diffusive media: discrimination between scattering and absorption contributions,�?? Appl. Phys. Lett. 69, 4162-4164 (1996).
[CrossRef]

Eur. J. Radiol. (1)

I. T. Gram, E. Funkhouser, and L. Tabar, �??The Tabar classification of mammographic parenchymal patterns,�?? Eur. J. Radiol. 24, 131-136 (1997).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quant. Electron. (1)

S.B. Colak, M.B. van der Mark, G.W.'t Hooft, J.H. Hoogenraad, E.S. van der Linden, and F.A. Kuijpers, �??Clinical optical tomography and NIR spectroscopy for breast cancer detection,�?? IEEE J. Sel. Top. Quant. Electron. 5, 1143-1158 (1999).
[CrossRef]

J. Biomed. Opt. (4)

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. �?sterberg, and K. D. Paulsen, �??Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,�?? J. Biomed. Opt. 7, 72-79 (2002).
[CrossRef] [PubMed]

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, �??Quantification of optical properties of a breast tumor using random walk theory,�?? J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef] [PubMed]

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, �??Contrast Features of Breast Cancer in Frequency-Domain Laser Scanning Mammography,�?? J. Biomed. Opt. 3, 129-136 (1998).
[CrossRef] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, �??Spectroscopy enhances the information content of optical mammography,�?? J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

Med. Phys. (1)

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess and W. W. Mantulin, �??Frequency domain optical mammography: edge effect corrections,�?? Med. Phys. 23, 149-156 (1996).
[CrossRef] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, �??Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,�?? Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Opt. Lett. (1)

OSA Technical Digest (1)

R. Cubeddu, G. M. Danesini, E.Giambattistelli, F. Messina, L. Pallaro, A. Pifferi, P. Taroni, and A. Torricelli, �??Time-resolved optical mammograph for clinical studies beyond 900 nm," in OSA Biomedical Topical Meetings, OSA Technical Digest, (Optical Society of America, Washington, D.C., 2002), pp. 674-676.

Photochem. Photobiol. (2)

V. Quaresima, S. J. Matcher, and M. Ferrari, �??Identification and quantification of intrinsic optical contrast for near-infrared mammography,�?? Photochem. Photobiol. 67, 4-14 (1998).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, �??Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,�?? Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

Phys. Med. Biol. (1)

T. Durduran, R. Choe, J. P. Pulver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A.G.Yodh, �??Bulk optical properties of healthy female breast tissue,�?? Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Proc. Nat. Acad. Sci. USA (1)

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, �??Concurrent MRI and diffuse optical tomography of breast cancer after indocyanine green enhancement,�?? Proc. Nat. Acad. Sci. USA 97, 2767-2772 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. (1)

M.A. Franceschini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Mantulin, M. Seeber, P.M. Schlag, and M. Kaschke, �??Frequency-domain techniques enhance optical mammography: initial clinical results,�?? Proc. Natl. Acad. Sci. 94, 6468-6473 (1997).
[CrossRef] [PubMed]

Radiology (2)

B. Monsees, J.M. Destouet and D. Gersell, �??Light scan evaluation of nonpalpable breast lesions,�?? Radiology 163, 467-470 (1987).
[PubMed]

B.W. Pogue, S.P. Poplack, T.O. McBride, W.A. Wells, K.S. Osterman, U.L. Osterberg and K.D. Paulsen, �??Quantitative hemoglobin tomography with di.use near-infrared spectroscopy: Pilot results in the breast,�?? Radiology 218, 262-270 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Scheme of the time-resolved multiwavelength mammograph.

Fig. 2.
Fig. 2.

Plot of the extinction coefficients of the four main tissue constituents absorbing between 650 and 1000 nm (i.e. HHb, O2Hb, lipids and water) as a function of the wavelength.

Fig. 3.
Fig. 3.

Patient #044, R_OB: X-ray mammogram and map of absorption coefficient (top row) and reduced scattering coefficient (bottom row) at 685 nm (scale 0.03–0.11/9.7–13.1 cm-1), 785 nm (scale 0.02–0.06/8.3–11.5 cm-1), 915 nm (scale 0.07–0.12/8.8–11.1 cm-1) and 975 nm (scale 0.06–0.15/9.0–11.9 cm-1) (from left to right).

Fig. 4.
Fig. 4.

Patient #044, R_OB: Map of SO2 (scale 24%–76%), tHb (scale 7–26 µM), Lipid (scale 25%–77%) and Water (scale 6%–22%) content.

Fig. 5.
Fig. 5.

Patient #044, R_OB: Map of a (scale 8.7–11.0) and b (scale 0.11–0.43) parameters.

Fig. 6.
Fig. 6.

Patient #057, R_OB: X-ray mammogram and map of absorption coefficient (top row) and reduced scattering coefficient (bottom row) at 685 nm (scale 0.04–0.07/10.7–13.6 cm-1), 785 nm (scale 0.03–0.06/8.8–11.2 cm-1), 915 nm (scale 0.07–0.14/8.1–13.7 cm-1) and 975 nm (scale 0.05–0.14/7.2–12.0 cm-1) (from left to right).

Fig. 7.
Fig. 7.

Patient #057, R_OB: Map of SO2 (scale 51–75%), tHb (scale 15.6–31.8 µM), Lipid (scale 20.4%–59.3%) and Water (scale 2.4–24.5%) content.

Fig. 8.
Fig. 8.

Patient #057, R_OB: Map of a (scale 7.2–11.3) and b (scale 0.4–1.4) parameters.

Fig. 9.
Fig. 9.

Patient #060, L_CC: X-ray mammogram and map of absorption coefficient (top row) and reduced scattering coefficient (bottom row) at 685 nm (scale 0.03–0.087/10.6–13.7 cm-1), 785 nm (scale 0.025–0.72/9.3–12.2 cm-1), 915 nm (scale 0.064–0.12/9.2–13.2 cm-1) and 975 nm (scale 0.065–0.14/9.7–15.2 cm-1) (from left to right).

Fig. 10.
Fig. 10.

Patient #060, L_CC: Map of SO2 (scale 50%–89%), tHb (scale 11.6–32.3 µM), Lipid (scale 4%–57%) and Water (scale 2%–18%) content.

Fig. 11.
Fig. 11.

Patient #060, L_CC: Map of a (scale 9.2–13.5) and b (scale 0.02–0.77) parameters.

Fig. 12.
Fig. 12.

Patient #041, R_CC and L_CC: X-ray mammograms and map of absorption coefficient (top row) and reduced scattering coefficient (bottom row) at 685 nm (scale 0.03–0.073/0.03–0.070//8.6–10.7/8.9–11.3 cm-1), and 785 nm (scale 0.025–0.077/0.026–0.075//6.7–8.6/6.9–9.0 cm-1) (from left to right).

Fig. 13.
Fig. 13.

Patient #041, R_CC and L_CC: Map of SO2 (scale 68%–89%/71%–87%), tHb (scale 12.7–40.9/13.9–39.7 µM). Lipid and water relative content were fixed at 80% and 20%, respectively.

Fig. 14.
Fig. 14.

Patient #047, R_OB and L_OB: X-ray mammograms and map of absorption coefficient (top row) at 685 nm (scale 0.03–0.24/0.03–0.14 cm-1), 785 nm (scale 0.03–0.18/0.03–0.12 cm-1) (from left to right).

Fig. 15.
Fig. 15.

Patient #047, R_OB and L_OB: Map of SO2 (scale 52%–89%/62%–95%), tHb (scale 17.0–91.1/15.9–65.9 µM). Lipid and water relative content were fixed at 80% and 20%, respectively.

Fig. 16.
Fig. 16.

Patient #032, R_CC and L_CC: X-ray mammograms and map of absorption coefficient (top row) at 685 nm (scale 0.03–0.10/0.03–0.2 cm-1), 785 nm (scale 0.02–0.08/0.02–0.2 cm-1) (from left to right).

Fig. 17.
Fig. 17.

Patient #032, R_CC and L_CC: Map of SO2 (scale 50%–94%/65%–91%), tHb (scale 11.5–43.2/12.1–105.5 µM). Lipid and water relative content were fixed at 80% and 20%, respectively.

Tables (3)

Tables Icon

Table 1. Summary of patients information

Tables Icon

Table 2. Tissue constituents for bulk tissue and cyst

Tables Icon

Table 3. Tissue constituents for bulk tissue and tumor. Lipid and water relative contents was fixed to 80% and 20% respectively

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

C NL ( t ; μ a , D ) = T 0 ( t ; μ a 0 , D 0 ) T ( t ; μ a , D ) T ( t ; μ a , D ) = [ δ μ a J a ( t ; μ a 0 , D 0 ) T 0 ( t ; μ a 0 , D 0 ) + δ D J D ( t ; μ a 0 , D 0 ) T 0 ( t ; μ a 0 , D 0 ) ] .
T ( t ; μ a , D ) = T 0 ( t ; μ a 0 , D 0 ) { 1 [ δ μ a J a ( t ; μ a 0 , D 0 ) T 0 ( t ; μ a 0 , D 0 ) + δ D J D ( t ; μ a 0 , D 0 ) T 0 ( t ; μ a 0 , D 0 ) ] } 1 ,
μ a ( λ i ) = j c j ε j ( λ i ) .
μ s ( λ i ) = a x b ( λ i ) ,

Metrics