Abstract

This paper presents a simulation technique developed to concurrently model the pump and laser power evolution in a cladding pumped rare-earth doped fiber. The simulation technique uses a series of scaling factors to dramatically decrease simulation run-times, while maintaining accuracy. This approach differs from previous methods in that it can simulate arbitrary pump cladding shapes. The results of the simulation are validated using a decagon-shaped cladding pumped, ytterbium doped fiber. Good correlation is found between the simulated and experimental pump evolution and conversion efficiency.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, B.C. McCollum, �??Double-clad offset core Nd fiber laser,�?? in Proc. of Optical Fiber Sensors �??88, pp. PD5, (1988)
  2. A. White, S. Grubb, Optical Fiber Telecommunications IIIB, (Academic Press, 1997), Chap. 7
  3. H. Po, E. Snitzer, R. Tumminelli, L. Zenteno, F. Hakimi, N.M. Cho, T. Haw, �??Double-clad high brightness Nd fiber laser pumped by GaAlAs phased array,�?? in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1989). Pp. PD7
  4. M. Muendel, �??Optical fiber structure for efficient use of pump power,�?? US Patent # 5,533,563, 1996.
  5. D. DiGiovanni, �??Method of making a cladding pumped fiber structure,�?? US Patent # 5,873,923, 1999.
  6. M. Muendel, �??Optimal inner cladding shapes for double-clad fiber lasers,�?? in Conference on Lasers and Electro-Optics, Technical Digest, (Optical Society of America, Washington DC, 1996), pp. 209.
  7. L. Qiao, J. Wang, �??A modified ray-optic method for arbitrary dielectric waveguides,�?? IEEE J. Quantum Electron. 28, 2721-2727, (1992).
    [CrossRef]
  8. M. Feit, J. Fleck, �??Light propagation in graded index optical fibers,�?? Appl. Opt. 17, 3990-3998, (1978).
    [CrossRef] [PubMed]
  9. D. Kouznetsov, J. Moloney, �??Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry,�?? J. Opt. Soc. Am. B 19, 1259-1263, (2002).
    [CrossRef]
  10. D. Kouznetsov, J. Moloney, �??Efficiency of pump absorption in double-clad fiber amplifiers. III. Calculation of modes,�?? J. Opt. Soc. Am. B 19, 1304-1309, (2002).
    [CrossRef]
  11. L. Thylen, E. Wright, G. Stegeman, C. Seaton, J. Moloney, �??Beam propagation method analysis of a nonlinear directional coupler,�?? Opt. Lett. 11, 739-741, (1986).
    [CrossRef]
  12. A. Liu, K. Ueda, �??The absorption characteristics of circular, offset, and rectangular double-clad fibers,�?? Opt. Commun. 132, 511-518, (1996).
    [CrossRef]
  13. B. Kerrinckx, P. Even, D. Pureur, �??New theoretical model of ytterbium-doped double-clad fiber for laser application,�?? in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2001). Pp. TuI3-1.
  14. A. Siegman, Lasers (University Science Books, 1986), Chap. 3, 7.
  15. H. Pask, J Archambault, D. Hanna, L. Reekie, P.St.J. Russell, J. Townsend, A. Tropper, �??Operation of cladding pumped Yb3+-doped silica fibre lasers in the 1 μm region,�?? Electron. Lett. 30, 863-864, (1994).
    [CrossRef]

Appl. Opt. (1)

CLEO Technical Digest (1)

M. Muendel, �??Optimal inner cladding shapes for double-clad fiber lasers,�?? in Conference on Lasers and Electro-Optics, Technical Digest, (Optical Society of America, Washington DC, 1996), pp. 209.

Electron. Lett. (1)

H. Pask, J Archambault, D. Hanna, L. Reekie, P.St.J. Russell, J. Townsend, A. Tropper, �??Operation of cladding pumped Yb3+-doped silica fibre lasers in the 1 μm region,�?? Electron. Lett. 30, 863-864, (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Qiao, J. Wang, �??A modified ray-optic method for arbitrary dielectric waveguides,�?? IEEE J. Quantum Electron. 28, 2721-2727, (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

A. Liu, K. Ueda, �??The absorption characteristics of circular, offset, and rectangular double-clad fibers,�?? Opt. Commun. 132, 511-518, (1996).
[CrossRef]

Opt. Lett. (1)

Optical Fiber Communication Conference (2)

H. Po, E. Snitzer, R. Tumminelli, L. Zenteno, F. Hakimi, N.M. Cho, T. Haw, �??Double-clad high brightness Nd fiber laser pumped by GaAlAs phased array,�?? in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1989). Pp. PD7

B. Kerrinckx, P. Even, D. Pureur, �??New theoretical model of ytterbium-doped double-clad fiber for laser application,�?? in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2001). Pp. TuI3-1.

Other (5)

A. Siegman, Lasers (University Science Books, 1986), Chap. 3, 7.

M. Muendel, �??Optical fiber structure for efficient use of pump power,�?? US Patent # 5,533,563, 1996.

D. DiGiovanni, �??Method of making a cladding pumped fiber structure,�?? US Patent # 5,873,923, 1999.

E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, B.C. McCollum, �??Double-clad offset core Nd fiber laser,�?? in Proc. of Optical Fiber Sensors �??88, pp. PD5, (1988)

A. White, S. Grubb, Optical Fiber Telecommunications IIIB, (Academic Press, 1997), Chap. 7

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Pump and laser (signal) power evolution as a function of length for the simulated decagon-shaped fiber. In this case a pump power of 2 watts was used. The simulation length was 16 cm.

Fig. 2.
Fig. 2.

End micrograph of the experimental decagon-shaped fiber. The diameter of the pump clad is nominally 230 µm. Cleave damage obscures the upper and lower apices.

Fig. 3.
Fig. 3.

Simulated and experimental pump absorption as a function of length for the 230 µm diameter decagonal fiber. The length scale chosen reflects a range of typical device lengths for cladding pumped devices.

Fig. 4.
Fig. 4.

Simulated and experimental conversion efficiency as a function of length for the 230 µm diameter decagonal fiber.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E z = j 1 2 k 2 E j μ 0 ω 2 2 k P
P = ε 0 χ at E
χ at ( w ) = j 4 π 2 I 3 g rad , 2 1 Δ w a ( g 2 g 1 N 1 N 2 ) 1 1 + 2 j ( w w a ) Δ w a
χ = 1 4 π 2 λ 3 γ rad 2 1 Δ ω a ( g 2 g 1 N 1 N 2 )
u ( x , y , z ) = j ( z z 0 ) λ u ( x 0 , y 0 , z 0 ) e j k ( x x 0 ) 2 + ( y y 0 ) 2 2 ( z z 0 ) d x 0 d y 0
Δ N = [ N 0 W a + W e + 1 τ 2 + R 13 ] [ g 2 g 1 ( W e + 1 τ 2 ) ( W a + R 13 ) ]
Δ E = j k χ 2 n 2 E in Δ z
α fiber = α core A core A clad

Metrics