Abstract

Laser damage phenomena in fused silica are currently under study because of numerous related high power laser applications. Nano-sized defects are believed to be responsible for some laser damage initiation. In order to predict and to quantify this initiation process, engineered submicronic gold defects were embedded in silica. The study of these samples by localized pulsed irradiation of isolated gold particles coupled with Nomarski, atomic force and photothermal microscope observations permits us to discriminate between two distinct stages of material modification: one detectable at the surface and the second in the neighbourhood of the embedded particle. Comparison between the observations and simulations results in good agreement if we assume that inclusion melting initiates the damage.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. Bloembergen, �??Role of cracks, pores, and absorbing inclusion on laser induced damage threshold at surface of transparen dielectrics,�?? Appl. Opt. 12, 661 (1973)
    [CrossRef] [PubMed]
  2. A. Manenkov, A. Prokhorov, �??Laser induced damage in solids,�?? Sov. Phys. Uspeki 29, 104 (1986)
    [CrossRef]
  3. J. Dijon, T. Poiroux, C. Desrumaux, �??Nano absorbing centers : a key point in laser damage of thin film, �?? in Laser-Induced damage in Optical Materials, H. Bennett, A. Guenther, M. Kozlowski, B. Newnam, and M. Soileau, eds., Proc. SPIE 2966, 315 (1997)
    [CrossRef]
  4. J. O. Porteus, S. C. Seitel, �??Absolute onset of optical surface damage using distributed defect ensembles,�?? Appl. Opt. 23, 3796 (1984)
    [CrossRef] [PubMed]
  5. R. M. O�??Connell, �??Onset threshold analysis of defect-driven surface and bulk laser damage,�?? Appl. Opt. 31, 4143 (1992)
    [CrossRef] [PubMed]
  6. J. Y. Natoli, L. Gallais, H. Akhouayri, C. Amra, �??Laser induced damage of material in bulk, thin film, and liquid form,�?? Appl. Opt. 41, 3156 (2002)
    [CrossRef] [PubMed]
  7. S. Papernov, A. W. Schmid, R. Krishnan and L. Tsybeskov, �??Using colloidal gold nanoparticles for studies of laser interaction with defects in thin film,�?? in Laser-Induced damage in Optical Materials, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, and M. Soileau, eds., Proc. SPIE 4347, 146 (2001)
    [CrossRef]
  8. A.V. Hamza, W.J. Siekhaus, A.M. Rubenchik, M.D. Feit, L.L Chase, M. Savina, M.J. Pellin, I.D. Hutcheon, M.C. Nostrand, M. Runkel, B.W. Choi, M.C. Staggs, M.J. Fluss, �??Engineered defects for investigation of laser-induced damage of fused silica at 355nm,�?? in Laser-Induced damage in Optical Materials, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, and M. Soileau, eds., Proc. SPIE 4679, 96 (2002)
    [CrossRef]
  9. F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignère, M. Loiseau, J. T. Donohue, �??Study of UV laser interaction with gold nanoparticles embbeded in silica,�?? App. Phys. B 75, 803 (2002), 2002.
    [CrossRef]
  10. S. Papernov and A. W. Schmid, �??Correlation between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,�?? J. Appl. Phys. 92 (10), 5720 (2002).
    [CrossRef]
  11. H. Bercegol, F. Bonneau, P. Bouchut, P. Combis, J. T. Donohue, L. Gallais, L. Lamaignère, C. Le Diraison, M. Loiseau, J. Y. Natoli, C. Pellé, M. Perra, J. L. Rullier, J. Vierne, H. Ward, �??Laser ablation of fused silca induced by gold nanoparticles : comparison of simulation and experiments at 351nm,�?? in High Power laser ablation, SPIE 4760, 1055 (2002)
    [CrossRef]
  12. L. Gallais, J. Y. Natoli, �??Optimized metrology for laser damage measurement �?? Application to multiparameter study,�?? Appl. Opt. 42, 960 (2003).
    [CrossRef] [PubMed]
  13. ISO 11254-2, �??Determination of laser-damage threshold of optical surfaces-Part 2 : S-on-1 test�?? (2001)
  14. M. Commandré, P. Roche, �??Characterisation of optical coating by photothermal deflection,�?? Appl. Opt. 35, 5021 (1996)
    [CrossRef] [PubMed]
  15. A. During, C. Fossati, M. Commandré, �??Developpement of a photothermal microscope for multiscale studies of defects,�?? in Laser-Induced damage in Optical Materials, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, and M. Soileau, eds., Proc. SPIE 4679, 400 (2002)
    [CrossRef]
  16. P. Combis, F. Bonneau, G. Daval, L. Lamaignère, �??Laser induced damage simulations of absorbing materials under pulsed IR irradiation, �?? in Laser-Induced damage in Optical Materials, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, and M. Soileau, eds., Proc. SPIE 3902, 317 (2000).
    [CrossRef]
  17. G. Mie, Ann. Physik (4), 25, 377 (1908)
  18. F. Bonneau, P. Combis, G. Daval, J. B. Gaudry, �??Laser induced damage simulations of silica surface under 1.053 µm irradiation,�?? in Laser-Induced damage in Optical Materials, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, and M. Soileau, eds., Proc. SPIE 4347, 560 (2001)
    [CrossRef]

Ann. Physik

G. Mie, Ann. Physik (4), 25, 377 (1908)

App. Phys. B

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignère, M. Loiseau, J. T. Donohue, �??Study of UV laser interaction with gold nanoparticles embbeded in silica,�?? App. Phys. B 75, 803 (2002), 2002.
[CrossRef]

Appl. Opt.

J. Appl. Phys.

S. Papernov and A. W. Schmid, �??Correlation between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,�?? J. Appl. Phys. 92 (10), 5720 (2002).
[CrossRef]

Proc. SPIE

H. Bercegol, F. Bonneau, P. Bouchut, P. Combis, J. T. Donohue, L. Gallais, L. Lamaignère, C. Le Diraison, M. Loiseau, J. Y. Natoli, C. Pellé, M. Perra, J. L. Rullier, J. Vierne, H. Ward, �??Laser ablation of fused silca induced by gold nanoparticles : comparison of simulation and experiments at 351nm,�?? in High Power laser ablation, SPIE 4760, 1055 (2002)
[CrossRef]

A. During, C. Fossati, M. Commandré, �??Developpement of a photothermal microscope for multiscale studies of defects,�?? in Laser-Induced damage in Optical Materials, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, and M. Soileau, eds., Proc. SPIE 4679, 400 (2002)
[CrossRef]

P. Combis, F. Bonneau, G. Daval, L. Lamaignère, �??Laser induced damage simulations of absorbing materials under pulsed IR irradiation, �?? in Laser-Induced damage in Optical Materials, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, and M. Soileau, eds., Proc. SPIE 3902, 317 (2000).
[CrossRef]

F. Bonneau, P. Combis, G. Daval, J. B. Gaudry, �??Laser induced damage simulations of silica surface under 1.053 µm irradiation,�?? in Laser-Induced damage in Optical Materials, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, and M. Soileau, eds., Proc. SPIE 4347, 560 (2001)
[CrossRef]

J. Dijon, T. Poiroux, C. Desrumaux, �??Nano absorbing centers : a key point in laser damage of thin film, �?? in Laser-Induced damage in Optical Materials, H. Bennett, A. Guenther, M. Kozlowski, B. Newnam, and M. Soileau, eds., Proc. SPIE 2966, 315 (1997)
[CrossRef]

S. Papernov, A. W. Schmid, R. Krishnan and L. Tsybeskov, �??Using colloidal gold nanoparticles for studies of laser interaction with defects in thin film,�?? in Laser-Induced damage in Optical Materials, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, and M. Soileau, eds., Proc. SPIE 4347, 146 (2001)
[CrossRef]

A.V. Hamza, W.J. Siekhaus, A.M. Rubenchik, M.D. Feit, L.L Chase, M. Savina, M.J. Pellin, I.D. Hutcheon, M.C. Nostrand, M. Runkel, B.W. Choi, M.C. Staggs, M.J. Fluss, �??Engineered defects for investigation of laser-induced damage of fused silica at 355nm,�?? in Laser-Induced damage in Optical Materials, G. Exarhos, A. Guenther, M. Kozlowski, K. Lewis, and M. Soileau, eds., Proc. SPIE 4679, 96 (2002)
[CrossRef]

Sov. Phys. Uspeki

A. Manenkov, A. Prokhorov, �??Laser induced damage in solids,�?? Sov. Phys. Uspeki 29, 104 (1986)
[CrossRef]

Other

ISO 11254-2, �??Determination of laser-damage threshold of optical surfaces-Part 2 : S-on-1 test�?? (2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the engineered defect studied in this work. The AFM image shows the dome over an inclusion.

Fig. 2.
Fig. 2.

Observation of three gold inclusions by Nomarski images (focus at surface and at 5 µm depth) at left, and by AFM linear scans on the right: a) inclusion not irradiated, b) inclusion irradiated at 6 J/cm2, c) inclusion irradiated at 12 J/cm2.

Fig. 3.
Fig. 3.

Photothermal mapping (20µm×20 µm) on a single gold particle before and after two different irradiations at λ=1064 nm.

Fig. 4.
Fig. 4.

Simulation with code DELPOR showing the maximum inclusion temperature as a function of laser fluence, for two different wavelengths at 3ns.

Tables (1)

Tables Icon

Table 1. Statistical values for the different thresholds at the two wavelengths.

Metrics