Abstract

We consider the technical possibility of an adaptive contact lens and an adaptive eye lens implant based on the modal liquid-crystal wavefront corrector, aimed to correct the accommodation loss and higher-order aberrations of the human eye. Our first demonstrator with 5 mm optical aperture is capable of changing the focusing power in the range of 0 to +3 diopters and can be controlled via a wireless capacitive link. These properties make the corrector potentially suitable for implantation into the human eye or for use as an adaptive contact lens. We also discuss possible feedback strategies, aimed to improve visual acuity and to achieve supernormal vision with implantable adaptive optics.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics

Enrique J. Fernández and Pablo Artal
J. Opt. Soc. Am. A 22(9) 1732-1738 (2005)

Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes

Nathan Doble, Donald T. Miller, Geunyoung Yoon, and David R. Williams
Appl. Opt. 46(20) 4501-4514 (2007)

Liquid-crystal intraocular adaptive lens with wireless control

Aleksey N. Simonov, Gleb Vdovin, and Mikhail Loktev
Opt. Express 15(12) 7468-7478 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor,” J. Opt. Soc. Am. 11, 1949–1957 (1994).
    [Crossref]
  2. K. N. Ogle, “On the resolving power of the human eye,” J. Opt. Soc. Am. 41, 517–520 (1951).
    [Crossref] [PubMed]
  3. R. Navarro, E. Moreno-Barriuso, S. Bara, and Teresa Mancebo, “Phase plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236–238 (2000).
    [Crossref]
  4. M. P. Cagigal, V. F. Canales, J. F. Castejon-Mochon, P. M. Prieto, N. Lopez-Gil, and P. Artal, “Statistical description of wave-front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002).
    [Crossref]
  5. N. Doble, G. Yoon, L. Chen, P. Bierden, S. Oliver, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002).
    [Crossref]
  6. F. Vargas-Martin, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
    [Crossref]
  7. E. J. Fernandez, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
    [Crossref]
  8. C.W. Fowler and E.S. Pateras, “Liquid crystal lens review,” Ophthal. Physiol. Opt. 10, 186–194 (1990).
    [Crossref]
  9. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
    [Crossref]
  10. A. F. Naumov and G. Vdovin, “Multichannel liquid-crystal-based wave-front corrector with modal influence functions,” Opt. Lett. 23, 1550–1552 (1998).
    [Crossref]
  11. S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 22, 1258 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258.
    [Crossref]
  12. A. F. Naumov, Gordon Love, M. Yu. Loktev, and F. L. Vladimirov,“Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-9-344
    [Crossref] [PubMed]
  13. J. Bruines, “Process outlook for analog and rf applications,” Microelectronic Engineering 54, 35–48 (2000).
    [Crossref]
  14. B. Simon-Hettich and W. Becker, “Toxicological investigations of liquid crystals,” In 28th Freiburg Workshop on Liquid Crystals, Freiburg; Germany, (1999).
  15. W. Becker, B. Simon-Hettich, and P. Hnicke, “Toxicological and ecotoxicological investigations of liquid crystals and disposal of lcds,” Merck brochure, Merck KGaA, Liquid Crystals Division and Institute of Toxicology 64271 Darmstadt, September 25 (2001).
  16. E. Hecht. “Optics,” chapter 5, pages 203–205, Addison Wesley Longman Inc., 3rd edition (1998).
  17. R.E. Bedford and G. Wyszecki,“Axial chromatic aberration of the human eye,” J.Opt. Soc. Am. 47, 564–565 (1947).
  18. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and Sl. L. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optometry and Vision Science 80, 26–35 (2003).
    [Crossref] [PubMed]
  19. T. L. Kelly, A.F. Naumov, M.Yu. Loktev, M.A. Rakhmatulin, and O.A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295 (2000).
    [Crossref]

2003 (1)

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and Sl. L. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optometry and Vision Science 80, 26–35 (2003).
[Crossref] [PubMed]

2002 (3)

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 22, 1258 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258.
[Crossref]

M. P. Cagigal, V. F. Canales, J. F. Castejon-Mochon, P. M. Prieto, N. Lopez-Gil, and P. Artal, “Statistical description of wave-front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002).
[Crossref]

N. Doble, G. Yoon, L. Chen, P. Bierden, S. Oliver, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002).
[Crossref]

2001 (1)

2000 (3)

J. Bruines, “Process outlook for analog and rf applications,” Microelectronic Engineering 54, 35–48 (2000).
[Crossref]

T. L. Kelly, A.F. Naumov, M.Yu. Loktev, M.A. Rakhmatulin, and O.A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295 (2000).
[Crossref]

R. Navarro, E. Moreno-Barriuso, S. Bara, and Teresa Mancebo, “Phase plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236–238 (2000).
[Crossref]

1999 (1)

1998 (3)

1994 (1)

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor,” J. Opt. Soc. Am. 11, 1949–1957 (1994).
[Crossref]

1990 (1)

C.W. Fowler and E.S. Pateras, “Liquid crystal lens review,” Ophthal. Physiol. Opt. 10, 186–194 (1990).
[Crossref]

1951 (1)

1947 (1)

R.E. Bedford and G. Wyszecki,“Axial chromatic aberration of the human eye,” J.Opt. Soc. Am. 47, 564–565 (1947).

Artal, P.

Bara, S.

Becker, W.

B. Simon-Hettich and W. Becker, “Toxicological investigations of liquid crystals,” In 28th Freiburg Workshop on Liquid Crystals, Freiburg; Germany, (1999).

W. Becker, B. Simon-Hettich, and P. Hnicke, “Toxicological and ecotoxicological investigations of liquid crystals and disposal of lcds,” Merck brochure, Merck KGaA, Liquid Crystals Division and Institute of Toxicology 64271 Darmstadt, September 25 (2001).

Bedford, R.E.

R.E. Bedford and G. Wyszecki,“Axial chromatic aberration of the human eye,” J.Opt. Soc. Am. 47, 564–565 (1947).

Bierden, P.

Bille, J. F.

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor,” J. Opt. Soc. Am. 11, 1949–1957 (1994).
[Crossref]

Bruines, J.

J. Bruines, “Process outlook for analog and rf applications,” Microelectronic Engineering 54, 35–48 (2000).
[Crossref]

Cagigal, M. P.

Canales, V. F.

Castejon-Mochon, J. F.

Chen, L.

Clark, P.

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 22, 1258 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258.
[Crossref]

Diaz-Santana, L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and Sl. L. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optometry and Vision Science 80, 26–35 (2003).
[Crossref] [PubMed]

Doble, N.

Fernandez, E. J.

Fowler, C.W.

C.W. Fowler and E.S. Pateras, “Liquid crystal lens review,” Ophthal. Physiol. Opt. 10, 186–194 (1990).
[Crossref]

Goelz, S.

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor,” J. Opt. Soc. Am. 11, 1949–1957 (1994).
[Crossref]

Grimm, B.

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor,” J. Opt. Soc. Am. 11, 1949–1957 (1994).
[Crossref]

Guralnik, I. R.

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 22, 1258 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258.
[Crossref]

A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
[Crossref]

Hecht, E.

E. Hecht. “Optics,” chapter 5, pages 203–205, Addison Wesley Longman Inc., 3rd edition (1998).

Hnicke, P.

W. Becker, B. Simon-Hettich, and P. Hnicke, “Toxicological and ecotoxicological investigations of liquid crystals and disposal of lcds,” Merck brochure, Merck KGaA, Liquid Crystals Division and Institute of Toxicology 64271 Darmstadt, September 25 (2001).

Iglesias, I.

Kelly, T. L.

T. L. Kelly, A.F. Naumov, M.Yu. Loktev, M.A. Rakhmatulin, and O.A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295 (2000).
[Crossref]

Klimov, N. A.

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 22, 1258 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258.
[Crossref]

Kotova, S. P.

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 22, 1258 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258.
[Crossref]

Kvashnin, M. Yu.

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 22, 1258 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258.
[Crossref]

Lara-Saucedo, D.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and Sl. L. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optometry and Vision Science 80, 26–35 (2003).
[Crossref] [PubMed]

Liang, J.

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor,” J. Opt. Soc. Am. 11, 1949–1957 (1994).
[Crossref]

Llorente, L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and Sl. L. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optometry and Vision Science 80, 26–35 (2003).
[Crossref] [PubMed]

Loktev, M. Yu.

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 22, 1258 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258.
[Crossref]

A. F. Naumov, Gordon Love, M. Yu. Loktev, and F. L. Vladimirov,“Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-9-344
[Crossref] [PubMed]

A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
[Crossref]

Loktev, M.Yu.

T. L. Kelly, A.F. Naumov, M.Yu. Loktev, M.A. Rakhmatulin, and O.A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295 (2000).
[Crossref]

Lopez-Gil, N.

Love, Gordon

Love, Gordon D.

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 22, 1258 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258.
[Crossref]

Mancebo, Teresa

Marcos, Sl. L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and Sl. L. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optometry and Vision Science 80, 26–35 (2003).
[Crossref] [PubMed]

Moreno-Barriuso, E.

Naumov, A. F.

Naumov, A.F.

T. L. Kelly, A.F. Naumov, M.Yu. Loktev, M.A. Rakhmatulin, and O.A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295 (2000).
[Crossref]

Navarro, R.

Ogle, K. N.

Oliver, S.

Pateras, E.S.

C.W. Fowler and E.S. Pateras, “Liquid crystal lens review,” Ophthal. Physiol. Opt. 10, 186–194 (1990).
[Crossref]

Prieto, P. M.

Rakhmatulin, M. A.

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 22, 1258 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258.
[Crossref]

Rakhmatulin, M.A.

T. L. Kelly, A.F. Naumov, M.Yu. Loktev, M.A. Rakhmatulin, and O.A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295 (2000).
[Crossref]

Saunter, C. D.

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 22, 1258 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258.
[Crossref]

Simon-Hettich, B.

W. Becker, B. Simon-Hettich, and P. Hnicke, “Toxicological and ecotoxicological investigations of liquid crystals and disposal of lcds,” Merck brochure, Merck KGaA, Liquid Crystals Division and Institute of Toxicology 64271 Darmstadt, September 25 (2001).

B. Simon-Hettich and W. Becker, “Toxicological investigations of liquid crystals,” In 28th Freiburg Workshop on Liquid Crystals, Freiburg; Germany, (1999).

Toporkova, L. V.

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 22, 1258 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258.
[Crossref]

Vargas-Martin, F.

Vdovin, G.

Vdovin, G. V.

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 22, 1258 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258.
[Crossref]

Vladimirov, F. L.

Williams, D. R.

Wyszecki, G.

R.E. Bedford and G. Wyszecki,“Axial chromatic aberration of the human eye,” J.Opt. Soc. Am. 47, 564–565 (1947).

Yoon, G.

Zayakin, O. A.

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 22, 1258 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258.
[Crossref]

Zayakin, O.A.

T. L. Kelly, A.F. Naumov, M.Yu. Loktev, M.A. Rakhmatulin, and O.A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295 (2000).
[Crossref]

J. Opt. Soc. Am. (2)

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor,” J. Opt. Soc. Am. 11, 1949–1957 (1994).
[Crossref]

K. N. Ogle, “On the resolving power of the human eye,” J. Opt. Soc. Am. 41, 517–520 (1951).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J.Opt. Soc. Am. (1)

R.E. Bedford and G. Wyszecki,“Axial chromatic aberration of the human eye,” J.Opt. Soc. Am. 47, 564–565 (1947).

Microelectronic Engineering (1)

J. Bruines, “Process outlook for analog and rf applications,” Microelectronic Engineering 54, 35–48 (2000).
[Crossref]

Ophthal. Physiol. Opt. (1)

C.W. Fowler and E.S. Pateras, “Liquid crystal lens review,” Ophthal. Physiol. Opt. 10, 186–194 (1990).
[Crossref]

Opt. Commun. (1)

T. L. Kelly, A.F. Naumov, M.Yu. Loktev, M.A. Rakhmatulin, and O.A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295 (2000).
[Crossref]

Opt. Express (2)

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 22, 1258 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258.
[Crossref]

A. F. Naumov, Gordon Love, M. Yu. Loktev, and F. L. Vladimirov,“Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-9-344
[Crossref] [PubMed]

Opt. Lett. (6)

Optometry and Vision Science (1)

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and Sl. L. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optometry and Vision Science 80, 26–35 (2003).
[Crossref] [PubMed]

Other (3)

B. Simon-Hettich and W. Becker, “Toxicological investigations of liquid crystals,” In 28th Freiburg Workshop on Liquid Crystals, Freiburg; Germany, (1999).

W. Becker, B. Simon-Hettich, and P. Hnicke, “Toxicological and ecotoxicological investigations of liquid crystals and disposal of lcds,” Merck brochure, Merck KGaA, Liquid Crystals Division and Institute of Toxicology 64271 Darmstadt, September 25 (2001).

E. Hecht. “Optics,” chapter 5, pages 203–205, Addison Wesley Longman Inc., 3rd edition (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Implantable adaptive eye lens

Fig. 2.
Fig. 2.

Defocus (V=3.64 V, F=2.44 kHz) and spherical aberration (V=2.0 V, F=3 kHz) formed with a 10 mm LC lens.

Fig. 3.
Fig. 3.

Experimentally measured reactive power required to drive the LC lens as a function of the driving voltage and the focusing power. Since the lens is a reactive load, the active power dissipated in the lens is considerably smaller than shown in this graph.

Fig. 4.
Fig. 4.

Schematic of inductive (left), capacitive (middle) and optical (right) control of an implantable LC lens.

Fig. 5.
Fig. 5.

Adaptive LC lens fabricated for experiment with wireless control (top) and 3D model of a wireless implantable LC corrector with integrated receiver coil for remote control (bottom).

Fig. 6.
Fig. 6.

Interferometric patterns obtained experimentally for green (543 nm), yellow (594 nm) and red (632 nm) colors (left to right) using wireless capacitive control of the adaptive LC lens.

Fig. 7.
Fig. 7.

Voltage-frequency calibration curves for three different LC lenses.

Fig. 8.
Fig. 8.

Interferograms in Fig. 6, reconstructed for three color components. Chromatic focal lengths of the LC lens evaluated from these data are ~26 cm for green, ~30 cm for yellow and ~32 cm for red light.

Metrics