Abstract

We consider the technical possibility of an adaptive contact lens and an adaptive eye lens implant based on the modal liquid-crystal wavefront corrector, aimed to correct the accommodation loss and higher-order aberrations of the human eye. Our first demonstrator with 5 mm optical aperture is capable of changing the focusing power in the range of 0 to +3 diopters and can be controlled via a wireless capacitive link. These properties make the corrector potentially suitable for implantation into the human eye or for use as an adaptive contact lens. We also discuss possible feedback strategies, aimed to improve visual acuity and to achieve supernormal vision with implantable adaptive optics.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, �??Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor,�?? J. Opt. Soc. Am. 11, 1949-1957 (1994).
    [CrossRef]
  2. K. N. Ogle, �??On the resolving power of the human eye,�?? J. Opt. Soc. Am. 41, 517-520 (1951).
    [CrossRef] [PubMed]
  3. R. Navarro, E. Moreno-Barriuso, S. Bara, Teresa Mancebo, �??Phase plates for wave-aberration compensation in the human eye,�?? Opt. Lett. 25, 236-238 (2000).
    [CrossRef]
  4. M. P. Cagigal, V. F. Canales, J. F. Castejon-Mochon, P. M. Prieto, N. Lopez-Gil, P. Artal, �??Statistical description of wave-front aberration in the human eye,�?? Opt. Lett. 27, 37�??39 (2002).
    [CrossRef]
  5. N. Doble, G. Yoon, L. Chen, P. Bierden, S. Oliver, D. R. Williams, �??Use of a microelectromechanical mirror for adaptive optics in the human eye,�?? Opt. Lett. 27, 1537-1539 (2002).
    [CrossRef]
  6. F. Vargas-Martin, P. M. Prieto, P. Artal, �??Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,�?? J. Opt. Soc. Am. A 15, 2552-2562 (1998).
    [CrossRef]
  7. E. J. Fernandez, I. Iglesias, P. Artal, �??Closed-loop adaptive optics in the human eye,�?? Opt. Lett. 26, 746-748 (2001).
    [CrossRef]
  8. C.W. Fowler and E.S. Pateras, �??Liquid crystal lens review,�?? Ophthal. Physiol. Opt. 10, 186-194 (1990).
    [CrossRef]
  9. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, G. Vdovin, �??Liquid-crystal adaptive lenses with modal control,�?? Opt. Lett. 23, 992-994 (1998).
    [CrossRef]
  10. A. F. Naumov, G. Vdovin, �??Multichannel liquid-crystal-based wave-front corrector with modal in.uence functions,�?? Opt. Lett. 23, 1550-1552 (1998).
    [CrossRef]
  11. S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, L. V. Toporkova, �??Modal liquid crystal wavefront corrector,�?? Opt. Express 22, 1258 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258</a>.
    [CrossRef]
  12. A. F. Naumov, Gordon Love, M. Yu. Loktev, F. L. Vladimirov, �??Control optimization of spherical modal liquid crystal lenses,�?? Opt. Express 4, 344-352 (1999), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-9-344">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-9-344</a>
    [CrossRef] [PubMed]
  13. J. Bruines, �??Process outlook for analog and rf applications,�?? Microelectronic Engineering 54, 35-48 (2000).
    [CrossRef]
  14. B. Simon-Hettich, W. Becker, �??Toxicological investigations of liquid crystals,�?? In 28th Freiburg Workshop on Liquid Crystals, Freiburg; Germany, (1999).
  15. W. Becker, B. Simon-Hettich, P. Hnicke, �??Toxicological and ecotoxicological investigations of liquid crystals and disposal of lcds,�?? Merck brochure, Merck KGaA, Liquid Crystals Division and Institute of Toxicology 64271 Darmstadt, September 25 (2001).
  16. E. Hecht, Optics, (Addison Wesley Longman Inc., 3rd edition, 1998) Chapter 5, pgs. 203�??205
  17. R.E. Bedford and G. Wyszecki, �??Axial chromatic aberration of the human eye,�?? J.Opt. Soc. Am. 47, 564-565 (1947).
  18. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, Sl. L. Marcos, �??Aberrations of the human eye in visible and near infrared illumination,�?? Optometry and Vision Science 80, 26-35 (2003).
    [CrossRef] [PubMed]
  19. T. L. Kelly, A.F. Naumov, M.Yu. Loktev, M.A. Rakhmatulin, O.A. Zayakin, �??Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,�?? Opt. Commun. 181, 295 (2000).
    [CrossRef]

J. Opt. Soc. Am. (3)

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, �??Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor,�?? J. Opt. Soc. Am. 11, 1949-1957 (1994).
[CrossRef]

K. N. Ogle, �??On the resolving power of the human eye,�?? J. Opt. Soc. Am. 41, 517-520 (1951).
[CrossRef] [PubMed]

R.E. Bedford and G. Wyszecki, �??Axial chromatic aberration of the human eye,�?? J.Opt. Soc. Am. 47, 564-565 (1947).

J. Opt. Soc. Am. A (1)

Microelectronic Engineering (1)

J. Bruines, �??Process outlook for analog and rf applications,�?? Microelectronic Engineering 54, 35-48 (2000).
[CrossRef]

Ophthal. Physiol. Opt. (1)

C.W. Fowler and E.S. Pateras, �??Liquid crystal lens review,�?? Ophthal. Physiol. Opt. 10, 186-194 (1990).
[CrossRef]

Opt. Commun. (1)

T. L. Kelly, A.F. Naumov, M.Yu. Loktev, M.A. Rakhmatulin, O.A. Zayakin, �??Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,�?? Opt. Commun. 181, 295 (2000).
[CrossRef]

Opt. Express (2)

A. F. Naumov, Gordon Love, M. Yu. Loktev, F. L. Vladimirov, �??Control optimization of spherical modal liquid crystal lenses,�?? Opt. Express 4, 344-352 (1999), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-9-344">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-9-344</a>
[CrossRef] [PubMed]

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, Gordon D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, L. V. Toporkova, �??Modal liquid crystal wavefront corrector,�?? Opt. Express 22, 1258 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258</a>.
[CrossRef]

Opt. Lett. (6)

Optometry and Vision Science (1)

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, Sl. L. Marcos, �??Aberrations of the human eye in visible and near infrared illumination,�?? Optometry and Vision Science 80, 26-35 (2003).
[CrossRef] [PubMed]

Other (3)

B. Simon-Hettich, W. Becker, �??Toxicological investigations of liquid crystals,�?? In 28th Freiburg Workshop on Liquid Crystals, Freiburg; Germany, (1999).

W. Becker, B. Simon-Hettich, P. Hnicke, �??Toxicological and ecotoxicological investigations of liquid crystals and disposal of lcds,�?? Merck brochure, Merck KGaA, Liquid Crystals Division and Institute of Toxicology 64271 Darmstadt, September 25 (2001).

E. Hecht, Optics, (Addison Wesley Longman Inc., 3rd edition, 1998) Chapter 5, pgs. 203�??205

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Implantable adaptive eye lens

Fig. 2.
Fig. 2.

Defocus (V=3.64 V, F=2.44 kHz) and spherical aberration (V=2.0 V, F=3 kHz) formed with a 10 mm LC lens.

Fig. 3.
Fig. 3.

Experimentally measured reactive power required to drive the LC lens as a function of the driving voltage and the focusing power. Since the lens is a reactive load, the active power dissipated in the lens is considerably smaller than shown in this graph.

Fig. 4.
Fig. 4.

Schematic of inductive (left), capacitive (middle) and optical (right) control of an implantable LC lens.

Fig. 5.
Fig. 5.

Adaptive LC lens fabricated for experiment with wireless control (top) and 3D model of a wireless implantable LC corrector with integrated receiver coil for remote control (bottom).

Fig. 6.
Fig. 6.

Interferometric patterns obtained experimentally for green (543 nm), yellow (594 nm) and red (632 nm) colors (left to right) using wireless capacitive control of the adaptive LC lens.

Fig. 7.
Fig. 7.

Voltage-frequency calibration curves for three different LC lenses.

Fig. 8.
Fig. 8.

Interferograms in Fig. 6, reconstructed for three color components. Chromatic focal lengths of the LC lens evaluated from these data are ~26 cm for green, ~30 cm for yellow and ~32 cm for red light.

Metrics