Abstract

A slab of negatively refracting material is known to focus light and if 1 n = the focussing will be perfect, producing an image which is an exact replica of the object. Magnifying the image requires a new design concept in which the surface of the negatively refracting lens is curved. Here we show how a hollow cylinder of material can be designed to magnify an image but otherwise with the same perfection as the original lens. Curvature requires that ε and μ are now a function of position.

© 2003 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics USPEKHI 10, 509 (1968).
  2. R.A. Shelby, D.R. Smith, S. Schultz, "Experimental verification of negative index of refraction," Science 292, 79 (2001).
    [CrossRef]
  3. J.B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85 3966 (2000).
    [CrossRef]
  4. D.F. Sievenpiper, M.E. Sickmiller, and E. Yablonovitch, "3D Wire Mesh Photonic Crystals," Phys. Rev. Lett. 76, 2480 (1996).
    [CrossRef]
  5. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76 4773 (1996)
    [CrossRef]
  6. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, "Low Frequency Plasmons in Thin Wire Structures," J. Phys. [Condensed Matter] 10, 4785 (1998).
    [CrossRef]
  7. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, "Magnetism from Conductors and Enhanced Non-Linear Phenomena," IEEE Trans. Microwave Theory Techniques 47, 2075 (1999).
    [CrossRef]
  8. D.F. Sievenpiper, L. Zhang, R.F.J. Broas, F.J. Alexopoulos, E. Yablonovitch, IEEE Trans. Micr. Theory and Tech. "High impedance electromagnetic surfaces with a forbidden frequency band," 47, 2059-2074 (1999).
  9. R.F.J. Broas, D.F. Sievenpiper, E. Yablonovitch "A high-impedance ground plane applied to a cell phone handset geometry," IEEE Trans. Micr. Theory and Tech. 49, 1262-1265 (2001).
  10. M.C.K. Wiltshire, J.B. Pendry, I.R.Young, D.J. Larkman, D.J. Gilderdale and J.V. Hajnal., "Microstructured Magnetic Materials for RF Flux Guides in Magnetic Resonance Imaging," Science 291 848-51 (2001)
  11. Chiyan Luo, Steven G. Johnson, J.D. Joannopoulos and J.B. Pendry, "All-Angle Negative Refraction without Negative Effective Index," Phys. Rev. Rapid Commun. B65, 201104(R) (2002).
  12. J.B. Pendry and S.A. Ramakrishna "Near Field Lenses in Two Dimensions," J. Phys. [Condensed Matter] 14 1-17 (2002).
  13. A.J. Ward and J. B. Pendry, "Refraction and Geometry in Maxwell's Equations," J. Modern Opt. 43 773-93 (1996).
  14. R.H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films," Phys. Rev. 106, 874 (1957).
    [CrossRef]

IEEE Trans. Micr. Theory and Tech. (2)

D.F. Sievenpiper, L. Zhang, R.F.J. Broas, F.J. Alexopoulos, E. Yablonovitch, IEEE Trans. Micr. Theory and Tech. "High impedance electromagnetic surfaces with a forbidden frequency band," 47, 2059-2074 (1999).

R.F.J. Broas, D.F. Sievenpiper, E. Yablonovitch "A high-impedance ground plane applied to a cell phone handset geometry," IEEE Trans. Micr. Theory and Tech. 49, 1262-1265 (2001).

IEEE Trans. Microwave Theory Techniques (1)

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, "Magnetism from Conductors and Enhanced Non-Linear Phenomena," IEEE Trans. Microwave Theory Techniques 47, 2075 (1999).
[CrossRef]

J. Modern Opt. (1)

A.J. Ward and J. B. Pendry, "Refraction and Geometry in Maxwell's Equations," J. Modern Opt. 43 773-93 (1996).

J. Phys. Condensed Matter (2)

J.B. Pendry and S.A. Ramakrishna "Near Field Lenses in Two Dimensions," J. Phys. [Condensed Matter] 14 1-17 (2002).

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, "Low Frequency Plasmons in Thin Wire Structures," J. Phys. [Condensed Matter] 10, 4785 (1998).
[CrossRef]

Phys. Rev. (1)

R.H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films," Phys. Rev. 106, 874 (1957).
[CrossRef]

Phys. Rev. Lett. (3)

J.B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85 3966 (2000).
[CrossRef]

D.F. Sievenpiper, M.E. Sickmiller, and E. Yablonovitch, "3D Wire Mesh Photonic Crystals," Phys. Rev. Lett. 76, 2480 (1996).
[CrossRef]

J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76 4773 (1996)
[CrossRef]

Phys. Rev. Rapid Commun. (1)

Chiyan Luo, Steven G. Johnson, J.D. Joannopoulos and J.B. Pendry, "All-Angle Negative Refraction without Negative Effective Index," Phys. Rev. Rapid Commun. B65, 201104(R) (2002).

Science (2)

R.A. Shelby, D.R. Smith, S. Schultz, "Experimental verification of negative index of refraction," Science 292, 79 (2001).
[CrossRef]

M.C.K. Wiltshire, J.B. Pendry, I.R.Young, D.J. Larkman, D.J. Gilderdale and J.V. Hajnal., "Microstructured Magnetic Materials for RF Flux Guides in Magnetic Resonance Imaging," Science 291 848-51 (2001)

Soviet Phys. USPEKHI (1)

V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics USPEKHI 10, 509 (1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics