Abstract

We investigated a precursor of superlensing: regenerating evanescent waves by excitation of a surface plasmon. Because the permittivity of a silver slab approaches -1, we experimentally observed a broadening of surface-plasmon bandwidth. Our study identifies a means to access deep subwavelength features by use of a metamaterial superlens.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Kosaka, T. Kawashima, et al., �??Superprism phenomena in photonic crystals,�?? Phys. Rev. B 58, R10096 (1998).
    [CrossRef]
  2. D. Smith, W. Padilla, et al., �??Composite medium with simultaneously negative permittivity and permeability,�?? Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  3. V. Veselago, �??The electrodynamics of substances with simultaneously negative ε and µ,�?? Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  4. J. B. Pendry, �??Negative refraction makes a perfect lens,�?? Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  5. S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R Smith, and S. Schultz, �??The asymmetric lossy near perfect lens,�?? J. Mod. Opt. 49, 1747(2002).
    [CrossRef]
  6. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  7. P. B. Johnson and R. W. Christy, �??Optical constants of the noble metals,�?? Phys. Rev. B. 6, 4370-4379 (1972).
    [CrossRef]
  8. S. Hayashi, T. Kume, T. Amano, and K. Yamamoto, �??A new method of surface plasmon excitation mediated by metallic nanoparticles,�?? Jpn. J. Appl. Phys. 35, L331-L334 (1996).
    [CrossRef]
  9. E. Kroeger and E. Kretschmann, �??Scattering of light by slightly rough surfaces or thin films including plasma resonance emission,�?? Z. Physik 237, 1-15 (1970).
    [CrossRef]
  10. E. Kretschmann, �??The angular dependence and the polarization of light emitted by surface plasmons on metals due to roughness,�?? Opt. Commun. 5, 331-336 (1972).
    [CrossRef]
  11. W. H. Weber and G. W. Ford, �??Optical electric-field enhancement at a metal surface arising from surface plasmon excitation,�?? Opt. Lett. 6, 122-124 (1981).
    [CrossRef] [PubMed]
  12. Z. Liu, N. Fang, T.-J. Yen, and X. Zhang are preparing a manuscript to be called �??Observation of rapid growth of evanescent wave with thickness of a negative permittivity slab: a key for superlens.�??

J. Mod. Opt.

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R Smith, and S. Schultz, �??The asymmetric lossy near perfect lens,�?? J. Mod. Opt. 49, 1747(2002).
[CrossRef]

Jpn. J. Appl. Phys.

S. Hayashi, T. Kume, T. Amano, and K. Yamamoto, �??A new method of surface plasmon excitation mediated by metallic nanoparticles,�?? Jpn. J. Appl. Phys. 35, L331-L334 (1996).
[CrossRef]

Opt. Commun.

E. Kretschmann, �??The angular dependence and the polarization of light emitted by surface plasmons on metals due to roughness,�?? Opt. Commun. 5, 331-336 (1972).
[CrossRef]

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, �??Optical constants of the noble metals,�?? Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

H. Kosaka, T. Kawashima, et al., �??Superprism phenomena in photonic crystals,�?? Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Phys. Rev. Lett.

D. Smith, W. Padilla, et al., �??Composite medium with simultaneously negative permittivity and permeability,�?? Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, �??Negative refraction makes a perfect lens,�?? Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. Veselago, �??The electrodynamics of substances with simultaneously negative ε and µ,�?? Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Z. Physik

E. Kroeger and E. Kretschmann, �??Scattering of light by slightly rough surfaces or thin films including plasma resonance emission,�?? Z. Physik 237, 1-15 (1970).
[CrossRef]

Other

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

Z. Liu, N. Fang, T.-J. Yen, and X. Zhang are preparing a manuscript to be called �??Observation of rapid growth of evanescent wave with thickness of a negative permittivity slab: a key for superlens.�??

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Computed isotherm contour of transmissivity |T p |2 of (a) a conceptual NRIM slab and (b) a 50-nm silver film surrounded by air and glass (n=1.52). In (a) d=0.14λsp; ε2=1- 2ωsp2/(ω2+0.01iωωsp), and µ2=1-1.6ωsp2/[(ω-0.106ωsp)2+0.01iωωsp], k spsp/c. In (b) the permittivity data are taken from Ref. [7].

Fig. 2.
Fig. 2.

(a) Schematic RATR setup. (b) Assumed evanescent coupling by surface roughness scattering.

Fig. 3.
Fig. 3.

(a) Fourier-transformed roughness spectrum of a 50-nm silver film as probed by AFM. Inset, a cross-sectional TEM picture of a 50-nm silver film for comparison. (b) Computed dipole function |W(θ,0)|2 as a function of scattered angle.

Fig. 4.
Fig. 4.

(a) Azimuthal profile of the measured transmissivity of a 50-nm silver film for different light wavelengths. (b) Observed rainbow-like transmitted ring using a focused white-light source.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T p k x d = t 12 t 23 exp ( i k z 2 d ) + r 12 r 23 exp ( + i k z 2 d ) ,
k z 1 ε 1 k z 2 ε 2 k z 2 ε 2 k z 3 ε 3 k z 1 ε 1 + k z 2 ε 2 k z 2 ε 2 + k z 3 ε 3 .
ε 2 ε 1 ε 3 ε 2 ε 2 + ε 1 ε 3 + ε 2 .
Re ( ε 2 ) ( ε 2 2 + ε 1 ε 3 ) ( ε 1 + ε 3 ) > 0 .
dI I 0 d Ω = 4 ( π λ ) 4 T p k x d 2 S ( k x ) 2 W θ ϕ 2 ,

Metrics