Abstract

A method for thickness monitoring and turning-point prediction during deposition of narrow band pass optical filters (NBPF) for dense-wavelength-division-multiplexing (DWDM) applications is proposed. The method is based on a recurrent approach, with relative transmittance fitting, and includes partial coherence and monochromator bandpass effects. We show that the partial coherence effects in thin film structures are significant and can not be neglected. The proposed method is applicable for precise thickness monitoring and deposition control of any complex multilayer coating.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. J. Pan, F. Q. Zhou, and M. Zhou, �??Thin films improve 50-GHz DWDM devices,�?? Laser Focus World pp. 111�??116 (2002).
  2. F. Q. Zhou, M. Zhou, and J. J. Pan, �??Optical coating computer simulation of narrow bandpass .lters for dense wavelength division multiplexing,�?? In Optical Interference Coating, OSA Technical Digest Series 9, 223�??224 (1988).
  3. K. Zhang, J. Wang, E. Schwendeman, D. Dawson-Elli, R. Faber, and R. Sharps, �??Group delay and chromatic dispersion of thin-film-based, narrow bandpass filters used in dense wavelengthdivision- multiplexed systems,�?? Appl. Opt. 41, 3172�??3175 (2002).
    [CrossRef] [PubMed]
  4. A. Zoller, G. Gotzelmann, K. Matl, and D. Cushing, �??Temperature-stable bandpass filters deposited with plasma ion-assisted deposition,�?? Appl. Opt. 35, 5609�??5612 (1996).
    [CrossRef] [PubMed]
  5. H. A. Macleod, Thin-film optical filters (Adam Hilger Ltd, Bristol, 1986).
    [CrossRef]
  6. A. V. Tikhonravov and M. K. Trubetskov, �??Automated design and sensitivity analysis of wavelength-division multiplexing filters,�?? Appl. Opt. 41, 3176�??3182 (2002).
    [CrossRef] [PubMed]
  7. R. Faber, K. Zhang, and A. Zoeller, �??Design and manufacturing of WDM narrow band interference filters,�?? In Optical and Infrared Thin Films, M. L. Fulton, ed., Proc. of SPIE 4094, 58�??64 (2000).
    [CrossRef]
  8. P. W. Baumeister, �??Design of a coarse WDM bandpass filter using the Thelen bandpass design method,�?? Opt. Express 9, 652�??657 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-12-652
    [CrossRef] [PubMed]
  9. P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, and P. Roche, �??Optical filters: Monitoring process allowing the auto-correlation of thickness errors,�?? Thin Solid Films 13, 285�??290 (1972).
    [CrossRef]
  10. R. R. Willey, �??Simulation of errors in the monitoring of narrow bandpass filters,�?? Appl. Opt. 41, 3193�??3195 (2002).
    [CrossRef] [PubMed]
  11. B. T. Sullivan and J. A. Dobrowolski, �??Deposition error compensation for optical multilayer coatings. I. Theoretical description,�?? Appl. Opt. 31, 3821�??3835 (1992).
    [CrossRef] [PubMed]
  12. B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Rangel, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, �??High-rate automated deposition system for the manufacture of complex multilayer coatings,�?? Appl. Opt. 39, 157�??167 (2000).
    [CrossRef]
  13. C. Schroedter, �??An evaporation monitoring system featuring software trigger points and on line evaluation of refractive indices,�?? In Thin Film Technologies II, Proc. of SPIE 652, 15�??20 (1986).
    [CrossRef]
  14. R. R. Willey, �??Achieving narrow bandpass filters which meet the requirements for DWDM,�?? Thin Solid Films 398-399, 1�??9 (2001).
    [CrossRef]
  15. K. Postava, T. Yamaguchi, and R. Kantor, �??Matrix description of coherent and incoherent light reflection and transmission by anisotropic multilayer structures,�?? Appl. Opt. 41, 2521�??2531 (2002).
    [CrossRef] [PubMed]
  16. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge, New York, 1995).
  17. K. Postava, T. Yamaguchi, and T. Nakano, �??Characterization of organic low-dielectric-constant materials using optical spectroscopy,�?? Opt. Express 9, 141�??151 (2001), <a href="http://www.opticsexpress.org/oearchive/source/32940.htm">http://www.opticsexpress.org/oearchive/source/32940.htm</a>
    [CrossRef] [PubMed]

Appl. Opt. (7)

B. T. Sullivan and J. A. Dobrowolski, �??Deposition error compensation for optical multilayer coatings. I. Theoretical description,�?? Appl. Opt. 31, 3821�??3835 (1992).
[CrossRef] [PubMed]

A. Zoller, G. Gotzelmann, K. Matl, and D. Cushing, �??Temperature-stable bandpass filters deposited with plasma ion-assisted deposition,�?? Appl. Opt. 35, 5609�??5612 (1996).
[CrossRef] [PubMed]

B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Rangel, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, �??High-rate automated deposition system for the manufacture of complex multilayer coatings,�?? Appl. Opt. 39, 157�??167 (2000).
[CrossRef]

K. Postava, T. Yamaguchi, and R. Kantor, �??Matrix description of coherent and incoherent light reflection and transmission by anisotropic multilayer structures,�?? Appl. Opt. 41, 2521�??2531 (2002).
[CrossRef] [PubMed]

K. Zhang, J. Wang, E. Schwendeman, D. Dawson-Elli, R. Faber, and R. Sharps, �??Group delay and chromatic dispersion of thin-film-based, narrow bandpass filters used in dense wavelengthdivision- multiplexed systems,�?? Appl. Opt. 41, 3172�??3175 (2002).
[CrossRef] [PubMed]

A. V. Tikhonravov and M. K. Trubetskov, �??Automated design and sensitivity analysis of wavelength-division multiplexing filters,�?? Appl. Opt. 41, 3176�??3182 (2002).
[CrossRef] [PubMed]

R. R. Willey, �??Simulation of errors in the monitoring of narrow bandpass filters,�?? Appl. Opt. 41, 3193�??3195 (2002).
[CrossRef] [PubMed]

Laser Focus World (1)

J. J. Pan, F. Q. Zhou, and M. Zhou, �??Thin films improve 50-GHz DWDM devices,�?? Laser Focus World pp. 111�??116 (2002).

Opt. Express (2)

Proc. SPIE (2)

R. Faber, K. Zhang, and A. Zoeller, �??Design and manufacturing of WDM narrow band interference filters,�?? In Optical and Infrared Thin Films, M. L. Fulton, ed., Proc. of SPIE 4094, 58�??64 (2000).
[CrossRef]

C. Schroedter, �??An evaporation monitoring system featuring software trigger points and on line evaluation of refractive indices,�?? In Thin Film Technologies II, Proc. of SPIE 652, 15�??20 (1986).
[CrossRef]

Thin Solid Films (2)

R. R. Willey, �??Achieving narrow bandpass filters which meet the requirements for DWDM,�?? Thin Solid Films 398-399, 1�??9 (2001).
[CrossRef]

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, and P. Roche, �??Optical filters: Monitoring process allowing the auto-correlation of thickness errors,�?? Thin Solid Films 13, 285�??290 (1972).
[CrossRef]

Other (3)

F. Q. Zhou, M. Zhou, and J. J. Pan, �??Optical coating computer simulation of narrow bandpass .lters for dense wavelength division multiplexing,�?? In Optical Interference Coating, OSA Technical Digest Series 9, 223�??224 (1988).

H. A. Macleod, Thin-film optical filters (Adam Hilger Ltd, Bristol, 1986).
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Calculated transmittance during filter deposition and filter structure are shown (H, L, and G represent high-, low-refractive index layers, and substrate, respectively). The red and blue lines correspond to the Ta2O5 and SiO2 layers, respectively. Four minima correspond to the Fabry-Perot cavities.

Fig. 2.
Fig. 2.

Influence of the partial coherence phenomena originating from the finite monochromator bandpass to the spectral response of the filter (a) and to the transmittance measured during deposition of the layer number 31. Lorentzian profile was used in the calculation and Δλ denotes the FWHM (full width at half maximum) spectral linewidth.

Fig. 3.
Fig. 3.

Measured relative transmittance data (red lines) are compared with the best fit model (blue dashed lines) for the layer number 15. Plot (b) shows a detail near the turning point.

Fig. 4.
Fig. 4.

Convergence tests describing predictability of the turning points are shown. Plot (a) corresponds to the layer number 15, which represents a layer near cavity. Plot (b) shows the convergence tests for layer number 30. Blue solid and red dashed lines correspond to the model with and without inclusion of partial coherence phenomena.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d ( m ) = R 0 + R 1 m τ ,
T = T ( λ , φ ) f ( λ ) g ( φ ) d λ d φ f ( λ ) g ( φ ) d λ d φ ,

Metrics