Abstract

We use the combination of ultrafast gating and high parametric gain available with Difference-Frequency Generation (DFG) and Optical Parametric Amplification (OPA) to achieve the complete measurement of ultraweak ultrashort light pulses. Specifically, spectrally resolving such an amplified gated pulse vs. relative delay yields the complete pulse intensity and phase vs. time. This technique is a variation of Cross-correlation Frequency-Resolved Optical Gating (XFROG), and using it, we measure the intensity and phase of a train of attenuated white light continuum containing only a few attojoules per pulse. Unlike interferometric methods, this method can measure pulses with poor spatial coherence and random absolute phase, such as fluorescence.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, Rick Trebino, ed. (Kluwer Academic Publishers, Boston, 2002).
  2. S. Linden, H. Giessen, and J. Kuhl, �??XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,�?? Physical Status Solidi B Conference Title: Phys. Status Solidi B (Germany), 206, 119-124 (1998).
  3. Ultrafast Phenomena XIII: Proceedings of the 13th International Conference, D. R. Miller, M. M. Murnane, N. F. Scherer, A. M. Weiner, eds. (Springer-Verlag, 2003).
  4. D. N. Fittinghoff, J.L. Bowie, J.N. Sweetser, R. T. Jennings, M. A. Krumbuegel, K. W. DeLong, R. Trebino, and I. A. Walmsley, �??Measurement of the Intensity and Phase of Ultraweak, Ultrashort Laser Pulse,�?? Opt. Lett. 21, 884-886 (1996).
    [CrossRef] [PubMed]
  5. D. T. Reid, P. Loza-Alvarez, C. T. A. Brown, T. Beddard, and W. Sibbett, �??Amplitude and phase measurement of mid-infrared femtosecond pulses by using cross-correlation frequency-resolved optical gating,�?? Opt. Lett. 25, 1478-80. (2000).
    [CrossRef]
  6. J. Y. Zhang, J.Y. Huang, and Y. R. Shen, Optical Parametric Generation and Amplification (An International Handbook on laser Science and Technology), V. S. Lectokhov, C. V. Shank, Y. R. Shen, and H. Walther, eds. (Harwood Academic Publishers, 1995).
  7. Y. Uesugi, Y. Mizutani, and T. Kitagawa, "Developments of widely tunable light sources for picosecond time-resolved resonance Raman spectroscopy," Rev. Sci. Instrum. 68, 4001-4008 (1997).
    [CrossRef]
  8. K. R. Wilson, and V. V. Yakovlev, "Ultrafast rainbow: tunable ultrashort pulses from a solid-state kilohertz system," J. Opt. Soc. Am. B 14, 444-8. (1997).
    [CrossRef]
  9. S. Haacke, J. Berrehar, C. Lapersonne-Mayer, M. Schott, �??Dynamics of singlet excitons in 1D conjugated polydiacetylene chains: a femtosecond fluorescence study,�?? Chem. Phys. Lett. 302, 363-368 (1999).
    [CrossRef]
  10. J. A. Moon, R. Mahon, M. D. Duncan, and J. Reintjes, �??Three-dimensional reflective image reconstruction through a scattering medium based on time-gated Raman amplification,�?? Opt. Lett. 19, 1234-1236 (1994).
    [CrossRef] [PubMed]
  11. S. M. Cameron, D. E. Bliss, M. W. Kimmel, and D. R. Neal, "Gated Frequency-Resolved Optical Imaging with an Optical Parametric Amplifier,�?? US Patent # 5939739 (Aug. 10, 1999).
  12. M. Du, G. R. Fleming, �??Femtosecond time-resolved fluorescence spectroscopy of Bacteriorhodopsin: Direct observation of excited state dynamics in the primary step of the proton pump cycle,�?? Biophys. Chem. 48, 101 (1993).
    [CrossRef]
  13. T. Gustavsson, G. Baldacchino, J.-C. Mialocq, S. Pommeret, �??A femtosecond fluorescence up-conversion of the dynamic Stokes shift of the DCM dye molecule in polar and non-polar solvents,�?? Chem. Phys. Lett. 236, 587 (1995).
    [CrossRef]
  14. S. Haacke, S. Schenkl, S. Vinzani, M. Chergui, �??Femotsecond and Picosecond Fluorescence of Native Bacteriarhodopsin and a Non-isomerizing Analog,�?? Biopolymers 67, 306 (2002).
    [CrossRef] [PubMed]
  15. S. Haacke, S. Vinzani, S. Schenkl, M. Chergui, �??Spectral and Kinetic Fluorescence properties of Native and Non-isomerizing Retinal in Bacteriarhodopsin,�?? Chem. Phys. Chem. 2, 310 (2001).
    [CrossRef]
  16. S. Linden, J. Kuhl and H. Giessen, �??Amplitude and phase characterization of weak blue ultrashort pulses by downconversion,�?? Opt. Lett. 24, 569-571 (1999).
    [CrossRef]
  17. R. Danielius, A. Piskarskas, P. DiTrapani, A. Andreoni, C. Solcia, P. Foggi, �??Matching of group velocities by spatial walk-off in collinear three-wave interaction with tilted pulses,�?? Opt. Lett. 21, 973-975.
    [PubMed]
  18. G. Cerullo, S. De Silversti, �??Ultrafast optical parametric amplifiers,�?? Rev. Sci. Intrum. 74, 1-18 (2003).
    [CrossRef]
  19. A.V. Smith, �??Group-velocity-matched three-wave mixing in birefringent crystals,�?? Opt. Lett. 26, 719-721 (2001).
    [CrossRef]

Biophys. Chem. (1)

M. Du, G. R. Fleming, �??Femtosecond time-resolved fluorescence spectroscopy of Bacteriorhodopsin: Direct observation of excited state dynamics in the primary step of the proton pump cycle,�?? Biophys. Chem. 48, 101 (1993).
[CrossRef]

Biopolymers (1)

S. Haacke, S. Schenkl, S. Vinzani, M. Chergui, �??Femotsecond and Picosecond Fluorescence of Native Bacteriarhodopsin and a Non-isomerizing Analog,�?? Biopolymers 67, 306 (2002).
[CrossRef] [PubMed]

Chem. Phys. Chem. (1)

S. Haacke, S. Vinzani, S. Schenkl, M. Chergui, �??Spectral and Kinetic Fluorescence properties of Native and Non-isomerizing Retinal in Bacteriarhodopsin,�?? Chem. Phys. Chem. 2, 310 (2001).
[CrossRef]

Chem. Phys. Lett. (2)

T. Gustavsson, G. Baldacchino, J.-C. Mialocq, S. Pommeret, �??A femtosecond fluorescence up-conversion of the dynamic Stokes shift of the DCM dye molecule in polar and non-polar solvents,�?? Chem. Phys. Lett. 236, 587 (1995).
[CrossRef]

S. Haacke, J. Berrehar, C. Lapersonne-Mayer, M. Schott, �??Dynamics of singlet excitons in 1D conjugated polydiacetylene chains: a femtosecond fluorescence study,�?? Chem. Phys. Lett. 302, 363-368 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (6)

Rev. Sci. Instrum. (1)

Y. Uesugi, Y. Mizutani, and T. Kitagawa, "Developments of widely tunable light sources for picosecond time-resolved resonance Raman spectroscopy," Rev. Sci. Instrum. 68, 4001-4008 (1997).
[CrossRef]

Rev. Sci. Intrum. (1)

G. Cerullo, S. De Silversti, �??Ultrafast optical parametric amplifiers,�?? Rev. Sci. Intrum. 74, 1-18 (2003).
[CrossRef]

US Patent # 5939739 (1)

S. M. Cameron, D. E. Bliss, M. W. Kimmel, and D. R. Neal, "Gated Frequency-Resolved Optical Imaging with an Optical Parametric Amplifier,�?? US Patent # 5939739 (Aug. 10, 1999).

Other (4)

J. Y. Zhang, J.Y. Huang, and Y. R. Shen, Optical Parametric Generation and Amplification (An International Handbook on laser Science and Technology), V. S. Lectokhov, C. V. Shank, Y. R. Shen, and H. Walther, eds. (Harwood Academic Publishers, 1995).

Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, Rick Trebino, ed. (Kluwer Academic Publishers, Boston, 2002).

S. Linden, H. Giessen, and J. Kuhl, �??XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,�?? Physical Status Solidi B Conference Title: Phys. Status Solidi B (Germany), 206, 119-124 (1998).

Ultrafast Phenomena XIII: Proceedings of the 13th International Conference, D. R. Miller, M. M. Murnane, N. F. Scherer, A. M. Weiner, eds. (Springer-Verlag, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the experimental apparatus for OPA/DFG XFROG. The gate pulse is characterized using a GRENOUILLE (not shown) before it enters the XFROG setup.

Fig. 2.
Fig. 2.

The measured and retrieved traces and retrieved intensity and phase vs. time and the spectrum and spectral phase vs. wavelength of a spectrally filtered continuum from a sapphire plate. The retrieved intensity and phase from the OPA XFROG measurement of 80fJ pulses agrees well with the retrieved intensity and phase of unattenuated continuum of 80pJ using the established technique, SFG XFROG as well as the independently measured spectrum.

Fig. 3.
Fig. 3.

OPA XFROG measurement of a 50 aJ attenuated and filtered continuum generated using a sapphire plate.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I XFROG ( ω , τ ) = E ( t ) E gate ( t τ ) exp ( i ω t ) dt 2
E OPA z = i κ E ref E DFG *
E DFG z = i κ E ref E OPA *
E sig OPA ( t , τ ) = E ( t ) E gate OPA ( t - τ ) ,
E gate OPA ( t ) = cosh ( g E ref ( t ) z ) .
g 2 = 16 π 2 d 2 eff n OPA n DFG λ OPA λ DFG .
E sig DFG ( t , τ ) = E ( t ) E gate DFG * ( t - τ ) .
E gate DFG ( t ) = exp [ i ϕ ref ( t ) ] sinh ( g E ref ( t ) z ) ,
l sp = τ p GVM sp ,

Metrics