Abstract

We present an improved design of an amplified Er:fiber laser system for the generation of intense femtosecond pulses. By properly controlling the influence of optical nonlinearities inside a stretched pulse amplifier, the spectrum is broadened to over 100 nm. The pulses are recompressed to 65 fs. A linearly polarized output of 110 mW is obtained at 67 MHz repetition rate. As a first application, we report the generation of an octave-spanning supercontinuum inside a short piece of a highly nonlinear fiber. Self-referencing detection of the carrier-envelope phase evolution with an f-to-2f interferometer is demonstrated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, �??Absolute Optical Frequency Measurement of the Cesium D1 line with a Mode-Locked Laser,�?? Phys. Rev. Lett. 82, 3568-3571 (1999)
    [CrossRef]
  2. H.R. Telle, G. Steinmeyer, A.E. Dunlop, J. Stenger, D.H. Sutter, U. Keller, �??Carrier-envelope offset phase control: A novel concept for absolute optical frequency meaurement and ultrahort pulse generation,�?? Appl. Phys. B 69, 327-332 (1999
    [CrossRef]
  3. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, and S.T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science 288, 635-639 (2000)
    [CrossRef] [PubMed]
  4. R. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, and P. St. J. Russell, �??Optical Frequency Synthesizer for Precision Spectroscopy,�?? Phys. Rev. Lett. 85, 2264-2267 (2000)
    [CrossRef] [PubMed]
  5. R. K. Shelton, L.-S. Ma, H.C. Kapteyn, M.M. Murnane, J.L. Hall, and J. Ye, �??Phase-Coherent Optical Pulse Synthesis from Separate Femtosecond Lasers,�?? Science 293, 1286-1289 (2001)
    [CrossRef] [PubMed]
  6. O.D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F.X. Kärtner, �??Role of the Carrier-Envelope Offset Phase of Few-Cycle Pulses in Nonperturbative Resonant Nonlinear Optics,�?? Phys. Rev. Lett. 89, 127401 (2002)
    [CrossRef] [PubMed]
  7. S. T. Cundiff, �??Phase stabilization of ultrashort optical pulses,�?? J. Phys. D: Appl. Phys. 35, R43-R59 (2002)
    [CrossRef]
  8. A. Onae, T. Ikegami, K. Sugiyama, F.L. Long, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, �??Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,�?? Opt. Commun. 183, 181-187 (2000)
    [CrossRef]
  9. J. Rauschenberger, T.M. Fortier, D.J. Jones, J. Ye, and S.T. Cundiff, �??Control of the frequency comb from a mode-locked Erbium-doped fiber laser," Opt. Express 10, 1404-1410 (2002) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1404</a>
    [CrossRef] [PubMed]
  10. K. Tamura, J. Jacobson, E.P. Ippen, H.A. Haus, and J.G. Fujimoto, �??Unidirectional ring resonators for selfstarting passively mode-locked lasers,�?? Opt. Lett. 18, 220-222 (1993)
    [CrossRef] [PubMed]
  11. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001
  12. K.W. DeLong, R. Trebino, J. Hunter, and W.E. White,"Frequency-resolved optical gating with the use of second-harmonic generation,�?? J. Opt. Soc. Am. B 11, 2206-2215 (1994)
    [CrossRef]
  13. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, "Pulse compression by use of deformable mirrors,�?? Opt. Lett. 24, 493-495 (1999)
    [CrossRef]
  14. N. Nishizawa and T. Goto, �??Widely Broadened Super Continuum Generation Using Highly Nonlinear Dispersion Shifted Fibers and Femtosecond Fiber Laser,�?? Jpn. J. Appl. Phys. 40, L365-L367 (2001)
    [CrossRef]

Appl. Phys. B

H.R. Telle, G. Steinmeyer, A.E. Dunlop, J. Stenger, D.H. Sutter, U. Keller, �??Carrier-envelope offset phase control: A novel concept for absolute optical frequency meaurement and ultrahort pulse generation,�?? Appl. Phys. B 69, 327-332 (1999
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D: Appl. Phys.

S. T. Cundiff, �??Phase stabilization of ultrashort optical pulses,�?? J. Phys. D: Appl. Phys. 35, R43-R59 (2002)
[CrossRef]

Jpn. J. Appl. Phys.

N. Nishizawa and T. Goto, �??Widely Broadened Super Continuum Generation Using Highly Nonlinear Dispersion Shifted Fibers and Femtosecond Fiber Laser,�?? Jpn. J. Appl. Phys. 40, L365-L367 (2001)
[CrossRef]

Opt. Commun.

A. Onae, T. Ikegami, K. Sugiyama, F.L. Long, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, �??Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,�?? Opt. Commun. 183, 181-187 (2000)
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, �??Absolute Optical Frequency Measurement of the Cesium D1 line with a Mode-Locked Laser,�?? Phys. Rev. Lett. 82, 3568-3571 (1999)
[CrossRef]

O.D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F.X. Kärtner, �??Role of the Carrier-Envelope Offset Phase of Few-Cycle Pulses in Nonperturbative Resonant Nonlinear Optics,�?? Phys. Rev. Lett. 89, 127401 (2002)
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, and P. St. J. Russell, �??Optical Frequency Synthesizer for Precision Spectroscopy,�?? Phys. Rev. Lett. 85, 2264-2267 (2000)
[CrossRef] [PubMed]

Science

R. K. Shelton, L.-S. Ma, H.C. Kapteyn, M.M. Murnane, J.L. Hall, and J. Ye, �??Phase-Coherent Optical Pulse Synthesis from Separate Femtosecond Lasers,�?? Science 293, 1286-1289 (2001)
[CrossRef] [PubMed]

D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, and S.T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science 288, 635-639 (2000)
[CrossRef] [PubMed]

Other

G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Fiber optic stretched pulse amplifier system. WDM: Wavelength-division multiplexer.

Fig. 2 (a-c).
Fig. 2 (a-c).

Output spectra from the Er:doped fiber amplifier for various lenghts l of the pre-chirping fiber. Inset: Seed spectrum derived from the mode-locked fiber ring laser.

Fig. 3.
Fig. 3.

Intensity (black lines) and phase (blue lines) of the compressed pulses in the wavelength (a) and time domain (b) for a stretcher with a length of l=120 cm. Pulse characteristics are determined via second-harmonic FROG.

Fig. 4.
Fig. 4.

f-to-2f interferometer setup for the detection of the carrier-envelope phase evolution. PM-HNDSF: polarization-maintaining highly nonlinear dispersion shifted fiber, BBO: nonlinear crystal, Θ: phase-matching angle, PBS: polarizing beams splitter, IF: interference filter, Pol.: polarizer, Si-APD: silicon avalanche photo diode.

Fig. 5.
Fig. 5.

Supercontinuum generated inside the highly nonlinear fiber (black line) and its second harmonic (gray lines) for phase-matching angles of Θ1=22.3°, Θ2=21.2° and Θ3=20.7°.

Fig. 6.
Fig. 6.

RF spectrum measured after the f-to-2f interferometer. Beat notes from the pulse-to-pulse phase slip appear at 5.4 MHz, 62.0 MHz and 72.8 MHz. The resolution is set to 250 kHz.

Metrics