Abstract

We propose a general design methodology for photonic crystal (PhC) diplexers, which is carried out along a filtering T-junction. The diplexer operation is investigated while carefully analyzing the dispersion relations of the three different waveguide channels. All simulations are carried out using the multiple multipole method (MMP), which offers perfect excitation and matching conditions for all waveguide ports involved. The resulting diplexer is highly compact (it covers an area of 13×9 lattice constants) and simple when compared to other PhC diplexer designs.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals - Molding the Flow of Light (Princeton University Press, New Jersey, 1995).
  2. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).
  3. K. M. Ho, C. T. Chan, and C. M. Soukolis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
    [Crossref] [PubMed]
  4. E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1993).
    [Crossref]
  5. M. Sigalas, C. M. Soukolis, E. N. Economou, C. T. Chan, and K. M. Ho,“Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
    [Crossref]
  6. E. Centeno and D. Felbacq, “Guiding waves with photonic crystals,” Opt. Commun. 160, 57 (1999).
    [Crossref]
  7. H. Benisty, “Modal analysis of optical guides with two-dimensional photonic cand-gap boundaries,” J. Appl. Phys. 79, 7483–7492 (1996).
    [Crossref]
  8. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
    [Crossref]
  9. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [Crossref] [PubMed]
  10. M. Loncar, J. Vuckovic, and A. Scherer, “Methods for controlling positions of guided modes of photonic crystal waveguides,” J. Opt. Soc. Am. B 18, 1362–1368 (2001).
    [Crossref]
  11. E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A 1, L10 (1999).
    [Crossref]
  12. J. Smajic, Ch. Hafner, and D. Erni, “Automatic calculation of band diagrams of photonic crystals using the multiple multipole method,” ACES Journal, (to be published).
  13. Christian Hafner, Post-modern Electromagnetics Using Intelligent MaXwell Solvers (John Wiley & Sons, Chichester, 1999).
  14. Christian Hafner, MaX-1: A Visual Electromagnetics Platform (John Wiley & Sons, Chichester, 1998).
  15. Christian Hafner and Jasmin Smajic, The Computationa Optics Group Web Page (IFH, ETH Zurich), http://alphard.ethz.ch/.
  16. E. Moreno, D. Erni, and Ch. Hafner, “Modeling of discontinuities in photonic crystal waveguides with the multiple multipole method,” Phys. Rev. E66, 036618 (2002).
    [Crossref]
  17. M. Koshiba, Y. Tsui, and M. Hikari, “Time-domain beam propagation method and its application to photonic crystal circuits,” J. Lightwave Technol. LT18, 102–110 (2000).
    [Crossref]
  18. J. Yonekura, M. Ikeda, and T. Baba, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” J. Lightwave Technol. LT17, 1500–1508 (1999).
    [Crossref]
  19. A. Boag and B. Z. Steinberg, “Narrow-band microcavity waveguides in photonic crystals,” J. Opt. Soc. Am. A 18, 2799–2805 (2001).
    [Crossref]
  20. A. Mekis, S. Fan, and J. D. Yoannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microwave Guided Wave Lett. 9, 502–504 (1999).
    [Crossref]
  21. K. B. Chung and S. W. Hong, “Wavelength demultiplexers based on the superprism phenomena in photonic crystals,” Appl. Phys. Lett. 81, 1549–1551 (2002).
    [Crossref]
  22. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals, “Opt. Express 3, 4–10 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4
    [Crossref] [PubMed]
  23. E. Moreno, D. Erni, and Ch. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B65 155120 (2002).
    [Crossref]
  24. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. LT19, 1970–1975 (2001).
    [Crossref]

2002 (1)

K. B. Chung and S. W. Hong, “Wavelength demultiplexers based on the superprism phenomena in photonic crystals,” Appl. Phys. Lett. 81, 1549–1551 (2002).
[Crossref]

2001 (3)

2000 (1)

M. Koshiba, Y. Tsui, and M. Hikari, “Time-domain beam propagation method and its application to photonic crystal circuits,” J. Lightwave Technol. LT18, 102–110 (2000).
[Crossref]

1999 (4)

J. Yonekura, M. Ikeda, and T. Baba, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” J. Lightwave Technol. LT17, 1500–1508 (1999).
[Crossref]

A. Mekis, S. Fan, and J. D. Yoannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microwave Guided Wave Lett. 9, 502–504 (1999).
[Crossref]

E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A 1, L10 (1999).
[Crossref]

E. Centeno and D. Felbacq, “Guiding waves with photonic crystals,” Opt. Commun. 160, 57 (1999).
[Crossref]

1998 (1)

1996 (2)

H. Benisty, “Modal analysis of optical guides with two-dimensional photonic cand-gap boundaries,” J. Appl. Phys. 79, 7483–7492 (1996).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

1994 (1)

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

1993 (2)

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1993).
[Crossref]

M. Sigalas, C. M. Soukolis, E. N. Economou, C. T. Chan, and K. M. Ho,“Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
[Crossref]

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukolis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Alerhand, O. L.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

Baba, T.

J. Yonekura, M. Ikeda, and T. Baba, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” J. Lightwave Technol. LT17, 1500–1508 (1999).
[Crossref]

Benisty, H.

H. Benisty, “Modal analysis of optical guides with two-dimensional photonic cand-gap boundaries,” J. Appl. Phys. 79, 7483–7492 (1996).
[Crossref]

Boag, A.

Brommer, K. D.

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1993).
[Crossref]

Centeno, E.

E. Centeno and D. Felbacq, “Guiding waves with photonic crystals,” Opt. Commun. 160, 57 (1999).
[Crossref]

E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A 1, L10 (1999).
[Crossref]

Chan, C. T.

M. Sigalas, C. M. Soukolis, E. N. Economou, C. T. Chan, and K. M. Ho,“Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
[Crossref]

K. M. Ho, C. T. Chan, and C. M. Soukolis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Chung, K. B.

K. B. Chung and S. W. Hong, “Wavelength demultiplexers based on the superprism phenomena in photonic crystals,” Appl. Phys. Lett. 81, 1549–1551 (2002).
[Crossref]

Devenyi, A.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

Economou, E. N.

M. Sigalas, C. M. Soukolis, E. N. Economou, C. T. Chan, and K. M. Ho,“Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
[Crossref]

Erni, D.

E. Moreno, D. Erni, and Ch. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B65 155120 (2002).
[Crossref]

E. Moreno, D. Erni, and Ch. Hafner, “Modeling of discontinuities in photonic crystal waveguides with the multiple multipole method,” Phys. Rev. E66, 036618 (2002).
[Crossref]

J. Smajic, Ch. Hafner, and D. Erni, “Automatic calculation of band diagrams of photonic crystals using the multiple multipole method,” ACES Journal, (to be published).

Fan, S.

A. Mekis, S. Fan, and J. D. Yoannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microwave Guided Wave Lett. 9, 502–504 (1999).
[Crossref]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals, “Opt. Express 3, 4–10 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4
[Crossref] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Felbacq, D.

E. Centeno and D. Felbacq, “Guiding waves with photonic crystals,” Opt. Commun. 160, 57 (1999).
[Crossref]

E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A 1, L10 (1999).
[Crossref]

Gmitter, T. J.

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1993).
[Crossref]

Guizal, B.

E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A 1, L10 (1999).
[Crossref]

Hafner, Ch.

J. Smajic, Ch. Hafner, and D. Erni, “Automatic calculation of band diagrams of photonic crystals using the multiple multipole method,” ACES Journal, (to be published).

E. Moreno, D. Erni, and Ch. Hafner, “Modeling of discontinuities in photonic crystal waveguides with the multiple multipole method,” Phys. Rev. E66, 036618 (2002).
[Crossref]

E. Moreno, D. Erni, and Ch. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B65 155120 (2002).
[Crossref]

Hafner, Christian

Christian Hafner, Post-modern Electromagnetics Using Intelligent MaXwell Solvers (John Wiley & Sons, Chichester, 1999).

Christian Hafner, MaX-1: A Visual Electromagnetics Platform (John Wiley & Sons, Chichester, 1998).

Christian Hafner and Jasmin Smajic, The Computationa Optics Group Web Page (IFH, ETH Zurich), http://alphard.ethz.ch/.

Haus, H. A.

Hikari, M.

M. Koshiba, Y. Tsui, and M. Hikari, “Time-domain beam propagation method and its application to photonic crystal circuits,” J. Lightwave Technol. LT18, 102–110 (2000).
[Crossref]

Ho, K. M.

M. Sigalas, C. M. Soukolis, E. N. Economou, C. T. Chan, and K. M. Ho,“Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
[Crossref]

K. M. Ho, C. T. Chan, and C. M. Soukolis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Hong, S. W.

K. B. Chung and S. W. Hong, “Wavelength demultiplexers based on the superprism phenomena in photonic crystals,” Appl. Phys. Lett. 81, 1549–1551 (2002).
[Crossref]

Ikeda, M.

J. Yonekura, M. Ikeda, and T. Baba, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” J. Lightwave Technol. LT17, 1500–1508 (1999).
[Crossref]

Joannopoulos, J. D.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals, “Opt. Express 3, 4–10 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4
[Crossref] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1993).
[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals - Molding the Flow of Light (Princeton University Press, New Jersey, 1995).

Kash, K.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

Koshiba, M.

M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. LT19, 1970–1975 (2001).
[Crossref]

M. Koshiba, Y. Tsui, and M. Hikari, “Time-domain beam propagation method and its application to photonic crystal circuits,” J. Lightwave Technol. LT18, 102–110 (2000).
[Crossref]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Loncar, M.

Meade, R. D.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1993).
[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals - Molding the Flow of Light (Princeton University Press, New Jersey, 1995).

Mekis, A.

A. Mekis, S. Fan, and J. D. Yoannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microwave Guided Wave Lett. 9, 502–504 (1999).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Moreno, E.

E. Moreno, D. Erni, and Ch. Hafner, “Modeling of discontinuities in photonic crystal waveguides with the multiple multipole method,” Phys. Rev. E66, 036618 (2002).
[Crossref]

E. Moreno, D. Erni, and Ch. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B65 155120 (2002).
[Crossref]

Rappe, A. M.

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1993).
[Crossref]

Sakoda, K.

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).

Scherer, A.

Sigalas, M.

M. Sigalas, C. M. Soukolis, E. N. Economou, C. T. Chan, and K. M. Ho,“Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
[Crossref]

Smajic, J.

J. Smajic, Ch. Hafner, and D. Erni, “Automatic calculation of band diagrams of photonic crystals using the multiple multipole method,” ACES Journal, (to be published).

Smajic, Jasmin

Christian Hafner and Jasmin Smajic, The Computationa Optics Group Web Page (IFH, ETH Zurich), http://alphard.ethz.ch/.

Smith, D. A.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

Soukolis, C. M.

M. Sigalas, C. M. Soukolis, E. N. Economou, C. T. Chan, and K. M. Ho,“Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
[Crossref]

K. M. Ho, C. T. Chan, and C. M. Soukolis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Steinberg, B. Z.

Tsui, Y.

M. Koshiba, Y. Tsui, and M. Hikari, “Time-domain beam propagation method and its application to photonic crystal circuits,” J. Lightwave Technol. LT18, 102–110 (2000).
[Crossref]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals, “Opt. Express 3, 4–10 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4
[Crossref] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Vuckovic, J.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals - Molding the Flow of Light (Princeton University Press, New Jersey, 1995).

Yablonovich, E.

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1993).
[Crossref]

Yoannopoulos, J. D.

A. Mekis, S. Fan, and J. D. Yoannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microwave Guided Wave Lett. 9, 502–504 (1999).
[Crossref]

Yonekura, J.

J. Yonekura, M. Ikeda, and T. Baba, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” J. Lightwave Technol. LT17, 1500–1508 (1999).
[Crossref]

Appl. Phys. Lett. (1)

K. B. Chung and S. W. Hong, “Wavelength demultiplexers based on the superprism phenomena in photonic crystals,” Appl. Phys. Lett. 81, 1549–1551 (2002).
[Crossref]

IEEE Microwave Guided Wave Lett. (1)

A. Mekis, S. Fan, and J. D. Yoannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microwave Guided Wave Lett. 9, 502–504 (1999).
[Crossref]

J. Appl. Phys. (2)

H. Benisty, “Modal analysis of optical guides with two-dimensional photonic cand-gap boundaries,” J. Appl. Phys. 79, 7483–7492 (1996).
[Crossref]

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

J. Lightwave Technol. (3)

M. Koshiba, Y. Tsui, and M. Hikari, “Time-domain beam propagation method and its application to photonic crystal circuits,” J. Lightwave Technol. LT18, 102–110 (2000).
[Crossref]

J. Yonekura, M. Ikeda, and T. Baba, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” J. Lightwave Technol. LT17, 1500–1508 (1999).
[Crossref]

M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. LT19, 1970–1975 (2001).
[Crossref]

J. Opt. A (1)

E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A 1, L10 (1999).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

E. Centeno and D. Felbacq, “Guiding waves with photonic crystals,” Opt. Commun. 160, 57 (1999).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

M. Sigalas, C. M. Soukolis, E. N. Economou, C. T. Chan, and K. M. Ho,“Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).
[Crossref]

Phys. Rev. Lett. (3)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukolis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1993).
[Crossref]

Other (8)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals - Molding the Flow of Light (Princeton University Press, New Jersey, 1995).

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).

J. Smajic, Ch. Hafner, and D. Erni, “Automatic calculation of band diagrams of photonic crystals using the multiple multipole method,” ACES Journal, (to be published).

Christian Hafner, Post-modern Electromagnetics Using Intelligent MaXwell Solvers (John Wiley & Sons, Chichester, 1999).

Christian Hafner, MaX-1: A Visual Electromagnetics Platform (John Wiley & Sons, Chichester, 1998).

Christian Hafner and Jasmin Smajic, The Computationa Optics Group Web Page (IFH, ETH Zurich), http://alphard.ethz.ch/.

E. Moreno, D. Erni, and Ch. Hafner, “Modeling of discontinuities in photonic crystal waveguides with the multiple multipole method,” Phys. Rev. E66, 036618 (2002).
[Crossref]

E. Moreno, D. Erni, and Ch. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B65 155120 (2002).
[Crossref]

Supplementary Material (3)

» Media 1: MOV (277 KB)     
» Media 2: MOV (205 KB)     
» Media 3: MOV (182 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The band structure for an underlying PhC with perfect square lattice for both E- and H-polarization. The band gaps only appear for E-polarization.

Fig. 2.
Fig. 2.

Dispersion relations for the three involved PhC waveguides (center). The dispersion curves are assigned to their underlying supercells (top, left, right).

Fig. 3.
Fig. 3.

(Top 1 MB, Bottom 1 MB) Diplexer operation: Light propagation (magnitude of the Poynting field) through the diplexer at two different wavelengths showing the corresponding propagation directions.

Fig. 4.
Fig. 4.

The dispersion relation for the improved design of the right waveguide channel with radius r=0.375·a (black lines) together with the dispersion curves of the initial design (Fig. 2).

Fig. 5.
Fig. 5.

(1 MB) Improved diplexer design: Light propagation (depicted as the magnitude of the Poynting field) through the right diplexer channel, (a movie file for the improved right propagation is available).

Tables (2)

Tables Icon

Table 1. Reflectance and transmittance of the first diplexer design.

Tables Icon

Table 2. Reflectance and transmittance of the improved diplexer design.

Metrics