Abstract

We have studied a bistable transflective cholesteric light shutter. The shutter contains dual-frequency cholesteric liquid crystals that incorporate a photocurable monomer. The electro-optical properties and optical microscope images of the shutter were examined. Good correlations between the cholesteric textures and optical properties of the shutters were obtained. The shutter was switched into a wide-band homogeneous transmission mode by a low frequency voltage pulse, and into a selective reflection mode using a high-frequency voltage pulse. The concentration of the monomer apparently affected the electro-optical characteristics of the shutter.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. A. M. Hikmet, �??Electrically induced light scattering from anisotropic gels,�?? J. Appl. Phys. 68, 4406 (1990).
    [CrossRef]
  2. D. �??K. Yang, L. �??C. Chien and J. W. Doane, �??Cholesteric liquid crystal/polymer dispersion for haze-freelight shutters,�?? Appl. Phys. Lett. 60, 3102 (1992).
    [CrossRef]
  3. G. P. Crawford, R. D. Polak, A. Scharkowski, L. �??C. Chien, S. Zumer and J. W. Doane, �??Nematic director-fields captured in polymer networks confined in spherical droplets,�?? J. Appl. Phys. 75, 1968 (1994).
    [CrossRef]
  4. A. Y. -G. Fuh, C. -Y. Huang, B. -W. Tzen, C. -R. Sheu, Y. -N. Chyr, G. -L. Lin and T. -C. Ko, �??Electrooptical device based on polymer-dispersed liquid crystal films,�?? Jpn. J. Appl. Phys. 33, 1088 (1994).
    [CrossRef]
  5. A. Y. -G. Fuh, M. -S. Tsai, C. -Y. Huang, T. -C. Ko and L. -C. Chien, �??Polymer-dispersed liquid crystal films for storing optical holographic images,�?? Opt. Quantum Electron. 28, 1535 (1996).
    [CrossRef]
  6. A. Y. -G. Fuh, C. -Y. Huang, M. -S. Tsai and J. -M. Chen, �??Studies of Polymer-Stabilized Cholesteric Liquid Crystal Texture Films,�?? Chin. J. Phys. (Taipei) 33, 645 (1995).
  7. J. W. Doane, N. Vaz, B. �??G. Wu and S. Zumer, �??Field controlled scattering from nematic microdroplets,�?? Appl. Phys. Lett. 48, 269 (1986).
    [CrossRef]
  8. J. West, �??Phase separation of liquid crystals in polymer,�?? Mol. Cryst. Liq. Cryst. 157, 427 (1988).
  9. J. W. Doane, A. Golemme, J. West, J. Whitehead and B. �??G. Wu, �??Polymer dispersed liquid crystals for display application,�?? Mol. Cryst. Liq. Cryst. 165, 511 (1988).
  10. D. -K. Yang, L. -C. Chien and J. W. Doane, �??Cholesteric liquid crystal/polymer gels dispersion bistable at zero field,�?? SID 1991 Int. Symp. Dig. 49 (1991).
  11. J. W. Doane, D. -K. Yang and Z. Yaniv, �??Front-lit panel display from polymer stabilized cholesteric textures,�?? SID 199 2 Int. Symp. Dig. 73 (1992).
  12. A. Y. �??G. Fuh, M. �??S. Tsai and C. �??Y. Huang, �??Polymer network formed in liquid crystals: polymer network induced birefringence in liquid crystals,�?? Jpn. J. Appl. Phys. 35, 3960 (1996).
    [CrossRef]
  13. P. Watson, J. E. Anderson and P. J. Bos, �??Twist-energy-driven Helfrich modulations in cholesteric liquid crystals illustrated in the transient-planar to planar transition,�?? Phys. Rev. E 62, 3719 (2000).
    [CrossRef]

Appl. Phys. Lett.

D. �??K. Yang, L. �??C. Chien and J. W. Doane, �??Cholesteric liquid crystal/polymer dispersion for haze-freelight shutters,�?? Appl. Phys. Lett. 60, 3102 (1992).
[CrossRef]

J. W. Doane, N. Vaz, B. �??G. Wu and S. Zumer, �??Field controlled scattering from nematic microdroplets,�?? Appl. Phys. Lett. 48, 269 (1986).
[CrossRef]

Chin. J. Phys.

A. Y. -G. Fuh, C. -Y. Huang, M. -S. Tsai and J. -M. Chen, �??Studies of Polymer-Stabilized Cholesteric Liquid Crystal Texture Films,�?? Chin. J. Phys. (Taipei) 33, 645 (1995).

J. Appl. Phys.

R. A. M. Hikmet, �??Electrically induced light scattering from anisotropic gels,�?? J. Appl. Phys. 68, 4406 (1990).
[CrossRef]

G. P. Crawford, R. D. Polak, A. Scharkowski, L. �??C. Chien, S. Zumer and J. W. Doane, �??Nematic director-fields captured in polymer networks confined in spherical droplets,�?? J. Appl. Phys. 75, 1968 (1994).
[CrossRef]

Jpn. J. Appl. Phys.

A. Y. -G. Fuh, C. -Y. Huang, B. -W. Tzen, C. -R. Sheu, Y. -N. Chyr, G. -L. Lin and T. -C. Ko, �??Electrooptical device based on polymer-dispersed liquid crystal films,�?? Jpn. J. Appl. Phys. 33, 1088 (1994).
[CrossRef]

A. Y. �??G. Fuh, M. �??S. Tsai and C. �??Y. Huang, �??Polymer network formed in liquid crystals: polymer network induced birefringence in liquid crystals,�?? Jpn. J. Appl. Phys. 35, 3960 (1996).
[CrossRef]

Mol. Cryst. Liq. Cryst.

J. West, �??Phase separation of liquid crystals in polymer,�?? Mol. Cryst. Liq. Cryst. 157, 427 (1988).

J. W. Doane, A. Golemme, J. West, J. Whitehead and B. �??G. Wu, �??Polymer dispersed liquid crystals for display application,�?? Mol. Cryst. Liq. Cryst. 165, 511 (1988).

Opt. Quantum Electron.

A. Y. -G. Fuh, M. -S. Tsai, C. -Y. Huang, T. -C. Ko and L. -C. Chien, �??Polymer-dispersed liquid crystal films for storing optical holographic images,�?? Opt. Quantum Electron. 28, 1535 (1996).
[CrossRef]

Phys. Rev. E

P. Watson, J. E. Anderson and P. J. Bos, �??Twist-energy-driven Helfrich modulations in cholesteric liquid crystals illustrated in the transient-planar to planar transition,�?? Phys. Rev. E 62, 3719 (2000).
[CrossRef]

Other

D. -K. Yang, L. -C. Chien and J. W. Doane, �??Cholesteric liquid crystal/polymer gels dispersion bistable at zero field,�?? SID 1991 Int. Symp. Dig. 49 (1991).

J. W. Doane, D. -K. Yang and Z. Yaniv, �??Front-lit panel display from polymer stabilized cholesteric textures,�?? SID 199 2 Int. Symp. Dig. 73 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup for measuring electro-optical characteristics of cells. QTH indicates the quartz tungsten halogen lamp, CL the collimator, P1 and P2 the pinhole, F the lens, FG the function generator, AMP the high voltage amplifier, PD the photodiode and PM the photometer.

Fig. 2.
Fig. 2.

Optical microscope images of the surface-stabilized film (a) after annealing in the V=0 (ANN) state, (b) after 100Hz 50V SPV and (c) after 100Hz 80V SPV.

Fig. 3.
Fig. 3.

Spectral characteristics of the surface-stabilized films under 100Hz 50V CSV, under 100Hz 80V CSV, after 100Hz 50V SPV and after 100Hz 80V SPV.

Fig. 4.
Fig. 4.

Optical microscope images of the polymer-stabilized film (a) in the ANN state, (b) after 5kHz 80V SPV, (c) after 5kHz 120 V SPV, (d) after 100Hz 80V SPV and (e) after 100Hz 120 V SPV. The concentration of the monomer added in this experiment is approximately 1wt%.

Fig. 5.
Fig. 5.

(a) Spectral characteristics of the 1wt% polymer stabilized film in the ANN state and after the application of 5kHz 120 V SPV. (b) Spectral characteristics of the 1wt% polymer-stabilized film in the ANN state, after 100Hz 80 V SPV and after 100Hz 120 V SPV, respectively.

Fig. 6.
Fig. 6.

Optical microscope images of the polymer stabilized film (a) in the ANN state, (b) after 5kHz 80V SPV, (c) after 5kHz 120 V SPV, (d) after 100Hz 80V SPV and (e) after 100Hz 120 V SPV. The concentration of the monomer added in this experiment is about 3wt%.

Fig. 7.
Fig. 7.

(a) Spectral characteristics of the 3wt% polymer-stabilized film in the ANN state and after 5kHz 120 V SPV, respectively. (b) Spectral characteristics of the 3wt%-polymer stabilized film in the ANN state, after 100Hz 80 V SPV and after 100Hz 120 V SPV.

Metrics