Abstract

The moving least-square (MLS) basis is implemented for the real-space band-structure calculation of 2D photonic crystals. A value-periodic MLS shape function is thus proposed in order to represent the periodicity of crystal lattice. Through numerical examples, this MLS method is proved to be a promising scheme for predicting band gaps of photonic crystals.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  2. Y. Xia, �??Photonic crystals,�?? Adv. Mater. 13, 369 (2001) and papers in this special issue.
    [CrossRef]
  3. K. Busch, "Photonic band structure theory: assesment and perspectives,�?? C. R. Physique 3, 53-66 (2002).
    [CrossRef]
  4. D. Cassagne, "Photonic band gap materials,�?? Ann. Phys. Fr. 23(4), 1-91 (1998).
    [CrossRef]
  5. J.B. Pendry, �??Calculating photonic band structure,�?? J. Phys.: Condens. Matter 8, 1085-1108 (1996).
    [CrossRef]
  6. H.S. Sozuer, J.W. Haus, and R. Inguva, �??Photonic bands: Convergence problems with the planewave method,�?? Phys. Rev. B 45, 13962-13972 (1992).
    [CrossRef]
  7. R.D. Meade, A.M. Rappe, K.D. Brommer, J.D. Joannopoulos, O.L. Alerhand, �??Accurate theoretical analysis of photonic band-gap materials,�?? Phys. Rev. B 48, 8434-8437 (1993).
    [CrossRef]
  8. C.T. Chan, Q.L. Yu, and K.M. Ho, �??Order-N spectral method for electromagnetic waves,�?? Phys. Rev. B 51, 16635-16642 (1995).
    [CrossRef]
  9. A.J. Ward and J.B. Pendry, �??Calculating photonic Green�??s functions using a nonorthogonal finite difference time-domain method,�?? Phys. Rev. B 58, 7252-7259 (1998).
    [CrossRef]
  10. M. Qiu and S. He, �??A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions,�?? J. Appl. Phys. 87, 8268-8275 (2000).
    [CrossRef]
  11. K.M. Leung and Y. Qiu, �??Multiple-scattering calculation of the two-dimensional photonic band structure,�?? Phys. Rev. B 48, 7767-7771 (1993).
    [CrossRef]
  12. X. Wang, X.G. Zhang, Q. Yu, and B.N. Harmon, �??Multiple-scattering theory for electromagnetic waves,�?? Phys. Rev. B 47, 4161-4167 (1993).
    [CrossRef]
  13. J.B. Pendry and A. MacKinnon, �??Calculation of photon dispersion relations,�?? Phys. Rev. Lett. 69, 2772-2775 (1992).
    [CrossRef] [PubMed]
  14. L. Shen, S. He, and S. Xiao, �??A finite-difference eigenvalue algorithm for calculating the band structure of a photonic crystal,�?? Comput. Phys. Comm. 143, 213-221 (2002).
    [CrossRef]
  15. W. Axmann and P. Kuchment, �??An efficient finite element method for computing spectra of photonic and acoustic band-gap materials: I. Scalar case,�?? J. Comput. Phys. 150, 468-481 (1999).
    [CrossRef]
  16. D.C. Dobson, �??An efficient band structure calculations in 2D photonic crystals,�?? J. Comput. Phys. 149, 363-376 (1999).
    [CrossRef]
  17. C. Mias, J.P. Webb and R.L. Ferrari, �??Finite element modelling of electromagnetic waves in doubly and triply periodic structures,�?? IEE Proc. Optoelectron. 146(2), 111-118 (1999).
    [CrossRef]
  18. M. Marrone, V.F. Rodriguez-Esquerre, and H.E. Hernandez-Figueroa, �??Novel numerical method for the analysis of 2D photonic crystals: the cell method,�?? Opt. Express 10, 1299-1304 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1299</a>
    [CrossRef] [PubMed]
  19. S. Li and W.K. Liu, �??Meshfree and particle methods and their applications,�?? Appl. Mechanics Rev. 55, 1-34 (2002).
    [CrossRef]
  20. D.W. Kim and Y. Kim, �??Point collocation method using the fast moving least-square reproducing kernel approximation,�?? Int. J. Numer. Methods Engrg. 56, 1445 - 1464 (2003).
    [CrossRef]
  21. L.W. Cordes and B. Moran, �??Treatment of material discontinuity in the Element-Free Galerkin method,�?? Comput. Meth. Appl. Mech. Eng. 139, 75-89 (1996).
    [CrossRef]

Adv. Mater. (1)

Y. Xia, �??Photonic crystals,�?? Adv. Mater. 13, 369 (2001) and papers in this special issue.
[CrossRef]

Ann. Phys. Fr. (1)

D. Cassagne, "Photonic band gap materials,�?? Ann. Phys. Fr. 23(4), 1-91 (1998).
[CrossRef]

Appl. Mechanics Rev. (1)

S. Li and W.K. Liu, �??Meshfree and particle methods and their applications,�?? Appl. Mechanics Rev. 55, 1-34 (2002).
[CrossRef]

C. R. Physique (1)

K. Busch, "Photonic band structure theory: assesment and perspectives,�?? C. R. Physique 3, 53-66 (2002).
[CrossRef]

Comput. Meth. Appl. Mech. Eng. (1)

L.W. Cordes and B. Moran, �??Treatment of material discontinuity in the Element-Free Galerkin method,�?? Comput. Meth. Appl. Mech. Eng. 139, 75-89 (1996).
[CrossRef]

Comput. Phys. Comm. (1)

L. Shen, S. He, and S. Xiao, �??A finite-difference eigenvalue algorithm for calculating the band structure of a photonic crystal,�?? Comput. Phys. Comm. 143, 213-221 (2002).
[CrossRef]

IEE Proc. Optoelectron. (1)

C. Mias, J.P. Webb and R.L. Ferrari, �??Finite element modelling of electromagnetic waves in doubly and triply periodic structures,�?? IEE Proc. Optoelectron. 146(2), 111-118 (1999).
[CrossRef]

Int. J. Numer. Methods Engrg. (1)

D.W. Kim and Y. Kim, �??Point collocation method using the fast moving least-square reproducing kernel approximation,�?? Int. J. Numer. Methods Engrg. 56, 1445 - 1464 (2003).
[CrossRef]

J. Appl. Phys. (1)

M. Qiu and S. He, �??A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions,�?? J. Appl. Phys. 87, 8268-8275 (2000).
[CrossRef]

J. Comput. Phys. (2)

W. Axmann and P. Kuchment, �??An efficient finite element method for computing spectra of photonic and acoustic band-gap materials: I. Scalar case,�?? J. Comput. Phys. 150, 468-481 (1999).
[CrossRef]

D.C. Dobson, �??An efficient band structure calculations in 2D photonic crystals,�?? J. Comput. Phys. 149, 363-376 (1999).
[CrossRef]

J. Phys. Condens. Matter (1)

J.B. Pendry, �??Calculating photonic band structure,�?? J. Phys.: Condens. Matter 8, 1085-1108 (1996).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (6)

H.S. Sozuer, J.W. Haus, and R. Inguva, �??Photonic bands: Convergence problems with the planewave method,�?? Phys. Rev. B 45, 13962-13972 (1992).
[CrossRef]

R.D. Meade, A.M. Rappe, K.D. Brommer, J.D. Joannopoulos, O.L. Alerhand, �??Accurate theoretical analysis of photonic band-gap materials,�?? Phys. Rev. B 48, 8434-8437 (1993).
[CrossRef]

C.T. Chan, Q.L. Yu, and K.M. Ho, �??Order-N spectral method for electromagnetic waves,�?? Phys. Rev. B 51, 16635-16642 (1995).
[CrossRef]

A.J. Ward and J.B. Pendry, �??Calculating photonic Green�??s functions using a nonorthogonal finite difference time-domain method,�?? Phys. Rev. B 58, 7252-7259 (1998).
[CrossRef]

K.M. Leung and Y. Qiu, �??Multiple-scattering calculation of the two-dimensional photonic band structure,�?? Phys. Rev. B 48, 7767-7771 (1993).
[CrossRef]

X. Wang, X.G. Zhang, Q. Yu, and B.N. Harmon, �??Multiple-scattering theory for electromagnetic waves,�?? Phys. Rev. B 47, 4161-4167 (1993).
[CrossRef]

Phys. Rev. Lett. (1)

J.B. Pendry and A. MacKinnon, �??Calculation of photon dispersion relations,�?? Phys. Rev. Lett. 69, 2772-2775 (1992).
[CrossRef] [PubMed]

Other (1)

J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The translation-and-searching algorithm for constructing a periodic meshfree shape function. Supports of the shape function are in gray within solid circle. The dashed circle illustrates the rod of photonic crystal.

Fig. 2.
Fig. 2.

The periodic MLS shape function. The position arrowed is the center of the shape function.

Fig. 3.
Fig. 3.

Unit cell of the electromagnetic Kronig-Penney problem.

Fig. 4.
Fig. 4.

Band structures of the electromagnetic Kronig-Penney problem. MLS results are denoted by open circles and analytic results by solid lines.

Fig. 5.
Fig. 5.

Convergence rates of the lowest five eigenvalues for the electromagnetic Kronig-Penney problem at k=(π/a)(0.5, 0.5).

Fig. 6.
Fig. 6.

A square lattice of circular rod and its unit cell discretized by 1697 nodes.

Fig. 7.
Fig. 7.

Results on band structures of square lattice composed of circular rods.

Fig. 8.
Fig. 8.

Comparisons of MLS method and plane wave method (TM modes) for the square lattice of circular rods.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

u h ( x ) = J N P N J ( x ) u J
N J ( x ) = N ( x J x ) p T ( x J x ) b ( x ) W ( x J x )
M ( x ) b ( x ) = p ( 0 )
M ( x ) J = 1 NP W J ( x ) p J ( x ) p J T ( x )
· 1 ε ( x ) ψ ( x ) = λ ψ ( x ) ( TE modes )
1 ε ( x ) 2 ψ ( x ) = λ ψ ( x ) ( TM modes )
( + i k ) · 1 ε ( x ) ( + i k ) u ( x ) = λ u ( x ) ( TE modes )
( + i k ) · ( + i k ) u ( x ) = λ ε ( x ) u ( x ) ( TM modes )
A u = λ B u
A IJ = Ω 1 ε ( x ) ( + i k ) N I P ( x ) · ( + i k ) N J P ( x ) ¯ dV , B IJ = Ω N I P ( x ) N J P ( x ) ¯ dV
A IJ = Ω ( + i k ) N I P ( x ) · ( + i k ) N J P ( x ) ¯ dV , B IJ = Ω ε ( x ) N I P ( x ) N J P ( x ) ¯ dV
u h ( x ) = L J = 1 NP N J ( x + L ) u J = J = 1 NP [ L N J ( x + L ) ] u J = J = 1 NP N J P ( x ) u J
N J ( x + L ) = p J T ( x + L ) b ( x ) W J ( x + L )
M ( x ) b ( x ) = p ( 0 ) , where M ( x ) L J = 1 NP W J ( x + L ) p J ( x + L ) p J T ( x + L )
N J P ( x ) L N J ( x + L ) = n 1 , n 2 N J ( x + n 1 a 1 + n 2 a 2 )
u h ( x , x ¯ ) = p ( x x ¯ ) · a ( x ¯ ) = p T ( x x ¯ ) a ( x ¯ )
J ( a ( x ¯ ) ) = I = 1 NP u ( x I ) p ( x I x ¯ ) · a ( x ¯ ) 2 W ( x I x ¯ )
a ( x ¯ ) = M 1 ( x ¯ ) I = 1 NP p ( x I x ¯ ) W ( x I x ¯ ) u ( x I )
M ( x ¯ ) I = 1 NP p ( x I x ¯ ) p T ( x I x ¯ ) W ( x I x ¯ )
u h ( x , x ¯ ) = p ( x x ¯ ) · a ( x ¯ ) = p T ( x x ¯ ) M 1 ( x ¯ ) I = 1 NP p ( x I x ¯ ) W ( x I x ¯ ) u ( x I )
u h ( x ) = I = 1 NP p T ( 0 ) M 1 ( x ) p ( x I x ) W ( x I x ) u ( x I )
M ( x ) = I = 1 NP p ( x I x ) p T ( x I x ) W ( x I x )
u h ( x ) = I = 1 NP N I ( x ) u I
N I ( x ) = p T ( 0 ) M 1 ( x ) p ( x I x ) W ( x I x )
N I ( x ) = p T ( x I x ) M 1 ( x ) p ( 0 ) W ( x I x ) = p T ( x I x ) b ( x ) W ( x I x )

Metrics