Abstract

We present comparative measurements of polarization dependent gain in neodymium and ytterbium doped fiber amplifiers. It is demonstrated, that this effect is always present in neodymium doped fiber amplifiers while under appropriate operation conditions it can be suppressed in ytterbium doped fiber amplifiers.

© 2003 Optical Society of America

Full Article  |  PDF Article
Related Articles
Narrow-line ytterbium fiber master-oscillator power amplifier

Nathan A. Brilliant, Raymond J. Beach, Alexander D. Drobshoff, and Stephen A. Payne
J. Opt. Soc. Am. B 19(5) 981-991 (2002)

Statistics of polarization-dependent gain in fiber-based Raman amplifiers

Q. Lin and Govind P. Agrawal
Opt. Lett. 28(4) 227-229 (2003)

References

  • View by:
  • |
  • |
  • |

  1. Paul Wysocki and Vincent Mazurczyk, “Polarization Dependent Gain in Erbium-Doped Fiber Amplifiers: Computer Model and Approximate Formulas,” J. Lightwave Technol. 14, 572–584 (1996)
    [Crossref]
  2. E.J. Greer, D.J. Lewis, and W.M. Macauley, “Polarisation dependent gain in erbium-doped fibre amplifiers,” Electron. Lett. 30, 46–47 (1994)
    [Crossref]
  3. Eyal Lichtman, “Limitations Imposed by Polarization-Dependend Gain and Loss on All-Optical Ultralong Communication Systems,” J. Lightwave Technol. 13, 906–913 (1995)
    [Crossref]
  4. D.W. Hall and M.J. Weber, “Polarized fluorescence line narrowing measurements in Nd laser glasses: Evidence of stimulated emission cross section anisotropy,” Appl. Phys. Lett. 42, 157–159 (1983)
    [Crossref]
  5. Douglas W. Hall, Roger A. Haas, William F. Krupke, and Marvin J. Weber, “Spectral and Polarization Hole Burning in Neodymium Glass Lasers,” IEEE J. Quantum Electron. QE-19, 1704–1717 (1983)
    [Crossref]

1996 (1)

Paul Wysocki and Vincent Mazurczyk, “Polarization Dependent Gain in Erbium-Doped Fiber Amplifiers: Computer Model and Approximate Formulas,” J. Lightwave Technol. 14, 572–584 (1996)
[Crossref]

1995 (1)

Eyal Lichtman, “Limitations Imposed by Polarization-Dependend Gain and Loss on All-Optical Ultralong Communication Systems,” J. Lightwave Technol. 13, 906–913 (1995)
[Crossref]

1994 (1)

E.J. Greer, D.J. Lewis, and W.M. Macauley, “Polarisation dependent gain in erbium-doped fibre amplifiers,” Electron. Lett. 30, 46–47 (1994)
[Crossref]

1983 (2)

D.W. Hall and M.J. Weber, “Polarized fluorescence line narrowing measurements in Nd laser glasses: Evidence of stimulated emission cross section anisotropy,” Appl. Phys. Lett. 42, 157–159 (1983)
[Crossref]

Douglas W. Hall, Roger A. Haas, William F. Krupke, and Marvin J. Weber, “Spectral and Polarization Hole Burning in Neodymium Glass Lasers,” IEEE J. Quantum Electron. QE-19, 1704–1717 (1983)
[Crossref]

Greer, E.J.

E.J. Greer, D.J. Lewis, and W.M. Macauley, “Polarisation dependent gain in erbium-doped fibre amplifiers,” Electron. Lett. 30, 46–47 (1994)
[Crossref]

Haas, Roger A.

Douglas W. Hall, Roger A. Haas, William F. Krupke, and Marvin J. Weber, “Spectral and Polarization Hole Burning in Neodymium Glass Lasers,” IEEE J. Quantum Electron. QE-19, 1704–1717 (1983)
[Crossref]

Hall, D.W.

D.W. Hall and M.J. Weber, “Polarized fluorescence line narrowing measurements in Nd laser glasses: Evidence of stimulated emission cross section anisotropy,” Appl. Phys. Lett. 42, 157–159 (1983)
[Crossref]

Hall, Douglas W.

Douglas W. Hall, Roger A. Haas, William F. Krupke, and Marvin J. Weber, “Spectral and Polarization Hole Burning in Neodymium Glass Lasers,” IEEE J. Quantum Electron. QE-19, 1704–1717 (1983)
[Crossref]

Krupke, William F.

Douglas W. Hall, Roger A. Haas, William F. Krupke, and Marvin J. Weber, “Spectral and Polarization Hole Burning in Neodymium Glass Lasers,” IEEE J. Quantum Electron. QE-19, 1704–1717 (1983)
[Crossref]

Lewis, D.J.

E.J. Greer, D.J. Lewis, and W.M. Macauley, “Polarisation dependent gain in erbium-doped fibre amplifiers,” Electron. Lett. 30, 46–47 (1994)
[Crossref]

Lichtman, Eyal

Eyal Lichtman, “Limitations Imposed by Polarization-Dependend Gain and Loss on All-Optical Ultralong Communication Systems,” J. Lightwave Technol. 13, 906–913 (1995)
[Crossref]

Macauley, W.M.

E.J. Greer, D.J. Lewis, and W.M. Macauley, “Polarisation dependent gain in erbium-doped fibre amplifiers,” Electron. Lett. 30, 46–47 (1994)
[Crossref]

Mazurczyk, Vincent

Paul Wysocki and Vincent Mazurczyk, “Polarization Dependent Gain in Erbium-Doped Fiber Amplifiers: Computer Model and Approximate Formulas,” J. Lightwave Technol. 14, 572–584 (1996)
[Crossref]

Weber, M.J.

D.W. Hall and M.J. Weber, “Polarized fluorescence line narrowing measurements in Nd laser glasses: Evidence of stimulated emission cross section anisotropy,” Appl. Phys. Lett. 42, 157–159 (1983)
[Crossref]

Weber, Marvin J.

Douglas W. Hall, Roger A. Haas, William F. Krupke, and Marvin J. Weber, “Spectral and Polarization Hole Burning in Neodymium Glass Lasers,” IEEE J. Quantum Electron. QE-19, 1704–1717 (1983)
[Crossref]

Wysocki, Paul

Paul Wysocki and Vincent Mazurczyk, “Polarization Dependent Gain in Erbium-Doped Fiber Amplifiers: Computer Model and Approximate Formulas,” J. Lightwave Technol. 14, 572–584 (1996)
[Crossref]

Appl. Phys. Lett. (1)

D.W. Hall and M.J. Weber, “Polarized fluorescence line narrowing measurements in Nd laser glasses: Evidence of stimulated emission cross section anisotropy,” Appl. Phys. Lett. 42, 157–159 (1983)
[Crossref]

Electron. Lett. (1)

E.J. Greer, D.J. Lewis, and W.M. Macauley, “Polarisation dependent gain in erbium-doped fibre amplifiers,” Electron. Lett. 30, 46–47 (1994)
[Crossref]

IEEE J. Quantum Electron. (1)

Douglas W. Hall, Roger A. Haas, William F. Krupke, and Marvin J. Weber, “Spectral and Polarization Hole Burning in Neodymium Glass Lasers,” IEEE J. Quantum Electron. QE-19, 1704–1717 (1983)
[Crossref]

J. Lightwave Technol. (2)

Eyal Lichtman, “Limitations Imposed by Polarization-Dependend Gain and Loss on All-Optical Ultralong Communication Systems,” J. Lightwave Technol. 13, 906–913 (1995)
[Crossref]

Paul Wysocki and Vincent Mazurczyk, “Polarization Dependent Gain in Erbium-Doped Fiber Amplifiers: Computer Model and Approximate Formulas,” J. Lightwave Technol. 14, 572–584 (1996)
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Setup of the amplifier.

Fig. 2.
Fig. 2.

Determination of minimum power ratio needed for accurate PDG measurements.

Fig. 3.
Fig. 3.

PDG in the neodymium (a) and the 10 m-ytterbium (b) doped amplifier for different seed power.

Fig. 4.
Fig. 4.

Gain for zero-PDG in the ytterbium doped fiber amplifier for different fiber lengths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G , = P out , , P in , ,
PDG = G G = P out , P in , · P in , P out , = P out , P out ,

Metrics