Abstract

Fabrication and evaluation of a subwavelength grating in diamond, designed to reduce the Fresnel reflection, is demonstrated. The antireflection (AR) structures are designed to reduce the surface reflection at an illuminating wavelength of 10.6 µm. With this AR-treatment, where no other material is introduced (i.e., no thin film coating), the unique properties of diamond can be fully used. The fabricated AR structures were optically evaluated with a spectrophotometer. The transmission through a diamond substrate with AR structures on both sides was increased from 71% to 97%, with a theoretical value of 99%. Microlenses in diamond are also demonstrated. The lenses are evaluated with interferometers and show good performance. The micro-optical structures were fabricated by electron-beam lithography or photolithographic methods followed by plasma etching.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Inclined surfaces in diamond: broadband antireflective structures and coupling light through waveguides

Pontus Forsberg and Mikael Karlsson
Opt. Express 21(3) 2693-2700 (2013)

Fabrication and evaluation of a diamond diffractive fan-out element for high power lasers

M. Karlsson and F. Nikolajeff
Opt. Express 11(3) 191-198 (2003)

Transfer of continuous-relief diffractive structures into diamond by use of inductively coupled plasma dry etching

Mikael Karlsson, Klas Hjort, and Fredrik Nikolajeff
Opt. Lett. 26(22) 1752-1754 (2001)

References

  • View by:
  • |
  • |
  • |

  1. S. S. M. Chan, F. Raybould, G. Arthur, F. Goodall, and R. B. Jackman, “Laser projection patterning for the formation of thin film diamond microstructures,” Diamond and Related Mater. 5, 317–320 (1996).
    [Crossref]
  2. J. D. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, and C. P. Christensen, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
    [Crossref]
  3. S. Gloor, V. Romano, W. Luthy, H. P. Weber, V. V. Kononenko, S. M. Pimenov, V. I. Konov, and A. V. Khomich, “Antireflection structures written by excimer laser on CVD diamond,” Appl. Phys. A 70, 547–550 (2000).
    [Crossref]
  4. M. Tarutani, Y. Takai, and R. Shimizu, “Application of the focused-ion-beam technique for preparing the cross-sectional sample of chemical vapor deposition diamond thin film for high-resolution transmission electron microscope observation,” Jap. J. Appl. Phys. 31, 1305–1308 (1992).
    [Crossref]
  5. E. G. Spencer and P. H. Schmidt, “Ion machining of diamond,” J. Appl. Phys. 43, 2956–2958 (1972).
    [Crossref]
  6. V. G. Ralchenko, A. V. Khomich, A. V. Baranov, I.I. Vlasov, and V. I. Konov, “Fabrication of CVD diamond optics with antireflective surface structures,” Phys. Status Solidi A 174, 171–176 (1999).
    [Crossref]
  7. S. J. Pearton, A. Katz, F. Ren, and J. R. Lothian, “ECR plasma etching of chemically vapour deposited diamond thin films,” Electron. Lett. 28, 822–824 (1992).
    [Crossref]
  8. M. Karlsson, K. Hjort, and F. Nikolajeff, “Transfer of continuous-relief diffractive structures into diamond by use of inductively coupled plasma dry etching,” Opt. Lett. 26, 1752–1754 (2001).
    [Crossref]
  9. M. Karlsson and F. Nikolajeff, “Fabrication and evaluation of a diamond diffractive fan-out element for high power lasers,” Opt. Express 11, 191–198 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-3-191
    [Crossref] [PubMed]
  10. B. Dischler and C. Wild, Low-Pressure Synthetic Diamond (Springer, Berlin Heidelberg, 1998).
    [Crossref]
  11. C. J. Brierley, C. M. Beck, G. R. Kennedy, J. Metcalfe, and D. Wheatley, “The potential of CVD diamond as a replacement for ZnSe in CO2 laser optics,” Diamond and Related Mater. 8, 1759–1764 (1999).
    [Crossref]
  12. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
    [Crossref] [PubMed]
  13. D. H. Raguin and G. Michael Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993).
    [Crossref] [PubMed]
  14. J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond,” Science 297, 1670–1672 (2002).
    [Crossref] [PubMed]
  15. S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet Emission from a Diamond pn Junction,” Science 292, 1899–1901 (2001).
    [Crossref] [PubMed]
  16. C. E. Troupe, I. C. Drummond, C. Graham, J. Grice, P. John, J. I. B. Wilson, M. G. Jubber, and N. A. Morrison, “Diamond-based glucose sensors [diabetic blood analysis],” Diamond and Related Mater. 7, 575–580 (1998).
    [Crossref]
  17. M. Adamschik, M. Hinz, C. Maier, P. Schmid, H. Seliger, E. P. Hofer, and E. Kohn, “Diamond micro system for bio-chemistry,” Diamond and Related Mater. 10, 722–730 (2001).
    [Crossref]

2003 (1)

2002 (1)

J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond,” Science 297, 1670–1672 (2002).
[Crossref] [PubMed]

2001 (3)

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet Emission from a Diamond pn Junction,” Science 292, 1899–1901 (2001).
[Crossref] [PubMed]

M. Karlsson, K. Hjort, and F. Nikolajeff, “Transfer of continuous-relief diffractive structures into diamond by use of inductively coupled plasma dry etching,” Opt. Lett. 26, 1752–1754 (2001).
[Crossref]

M. Adamschik, M. Hinz, C. Maier, P. Schmid, H. Seliger, E. P. Hofer, and E. Kohn, “Diamond micro system for bio-chemistry,” Diamond and Related Mater. 10, 722–730 (2001).
[Crossref]

2000 (1)

S. Gloor, V. Romano, W. Luthy, H. P. Weber, V. V. Kononenko, S. M. Pimenov, V. I. Konov, and A. V. Khomich, “Antireflection structures written by excimer laser on CVD diamond,” Appl. Phys. A 70, 547–550 (2000).
[Crossref]

1999 (2)

C. J. Brierley, C. M. Beck, G. R. Kennedy, J. Metcalfe, and D. Wheatley, “The potential of CVD diamond as a replacement for ZnSe in CO2 laser optics,” Diamond and Related Mater. 8, 1759–1764 (1999).
[Crossref]

V. G. Ralchenko, A. V. Khomich, A. V. Baranov, I.I. Vlasov, and V. I. Konov, “Fabrication of CVD diamond optics with antireflective surface structures,” Phys. Status Solidi A 174, 171–176 (1999).
[Crossref]

1998 (1)

C. E. Troupe, I. C. Drummond, C. Graham, J. Grice, P. John, J. I. B. Wilson, M. G. Jubber, and N. A. Morrison, “Diamond-based glucose sensors [diabetic blood analysis],” Diamond and Related Mater. 7, 575–580 (1998).
[Crossref]

1996 (1)

S. S. M. Chan, F. Raybould, G. Arthur, F. Goodall, and R. B. Jackman, “Laser projection patterning for the formation of thin film diamond microstructures,” Diamond and Related Mater. 5, 317–320 (1996).
[Crossref]

1994 (1)

J. D. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, and C. P. Christensen, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
[Crossref]

1993 (1)

1992 (2)

M. Tarutani, Y. Takai, and R. Shimizu, “Application of the focused-ion-beam technique for preparing the cross-sectional sample of chemical vapor deposition diamond thin film for high-resolution transmission electron microscope observation,” Jap. J. Appl. Phys. 31, 1305–1308 (1992).
[Crossref]

S. J. Pearton, A. Katz, F. Ren, and J. R. Lothian, “ECR plasma etching of chemically vapour deposited diamond thin films,” Electron. Lett. 28, 822–824 (1992).
[Crossref]

1988 (1)

1972 (1)

E. G. Spencer and P. H. Schmidt, “Ion machining of diamond,” J. Appl. Phys. 43, 2956–2958 (1972).
[Crossref]

Adamschik, M.

M. Adamschik, M. Hinz, C. Maier, P. Schmid, H. Seliger, E. P. Hofer, and E. Kohn, “Diamond micro system for bio-chemistry,” Diamond and Related Mater. 10, 722–730 (2001).
[Crossref]

Arthur, G.

S. S. M. Chan, F. Raybould, G. Arthur, F. Goodall, and R. B. Jackman, “Laser projection patterning for the formation of thin film diamond microstructures,” Diamond and Related Mater. 5, 317–320 (1996).
[Crossref]

Baranov, A. V.

V. G. Ralchenko, A. V. Khomich, A. V. Baranov, I.I. Vlasov, and V. I. Konov, “Fabrication of CVD diamond optics with antireflective surface structures,” Phys. Status Solidi A 174, 171–176 (1999).
[Crossref]

Beck, C. M.

C. J. Brierley, C. M. Beck, G. R. Kennedy, J. Metcalfe, and D. Wheatley, “The potential of CVD diamond as a replacement for ZnSe in CO2 laser optics,” Diamond and Related Mater. 8, 1759–1764 (1999).
[Crossref]

Brierley, C. J.

C. J. Brierley, C. M. Beck, G. R. Kennedy, J. Metcalfe, and D. Wheatley, “The potential of CVD diamond as a replacement for ZnSe in CO2 laser optics,” Diamond and Related Mater. 8, 1759–1764 (1999).
[Crossref]

Chan, S. S. M.

S. S. M. Chan, F. Raybould, G. Arthur, F. Goodall, and R. B. Jackman, “Laser projection patterning for the formation of thin film diamond microstructures,” Diamond and Related Mater. 5, 317–320 (1996).
[Crossref]

Christensen, C. P.

J. D. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, and C. P. Christensen, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
[Crossref]

Clausing, R. E.

J. D. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, and C. P. Christensen, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
[Crossref]

Coe, S. E.

J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond,” Science 297, 1670–1672 (2002).
[Crossref] [PubMed]

Connell, G. A. N.

Dischler, B.

B. Dischler and C. Wild, Low-Pressure Synthetic Diamond (Springer, Berlin Heidelberg, 1998).
[Crossref]

Drummond, I. C.

C. E. Troupe, I. C. Drummond, C. Graham, J. Grice, P. John, J. I. B. Wilson, M. G. Jubber, and N. A. Morrison, “Diamond-based glucose sensors [diabetic blood analysis],” Diamond and Related Mater. 7, 575–580 (1998).
[Crossref]

Gloor, S.

S. Gloor, V. Romano, W. Luthy, H. P. Weber, V. V. Kononenko, S. M. Pimenov, V. I. Konov, and A. V. Khomich, “Antireflection structures written by excimer laser on CVD diamond,” Appl. Phys. A 70, 547–550 (2000).
[Crossref]

Goodall, F.

S. S. M. Chan, F. Raybould, G. Arthur, F. Goodall, and R. B. Jackman, “Laser projection patterning for the formation of thin film diamond microstructures,” Diamond and Related Mater. 5, 317–320 (1996).
[Crossref]

Graham, C.

C. E. Troupe, I. C. Drummond, C. Graham, J. Grice, P. John, J. I. B. Wilson, M. G. Jubber, and N. A. Morrison, “Diamond-based glucose sensors [diabetic blood analysis],” Diamond and Related Mater. 7, 575–580 (1998).
[Crossref]

Grice, J.

C. E. Troupe, I. C. Drummond, C. Graham, J. Grice, P. John, J. I. B. Wilson, M. G. Jubber, and N. A. Morrison, “Diamond-based glucose sensors [diabetic blood analysis],” Diamond and Related Mater. 7, 575–580 (1998).
[Crossref]

Hammersberg, J.

J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond,” Science 297, 1670–1672 (2002).
[Crossref] [PubMed]

Hasegawa, M.

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet Emission from a Diamond pn Junction,” Science 292, 1899–1901 (2001).
[Crossref] [PubMed]

Heatherly, L.

J. D. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, and C. P. Christensen, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
[Crossref]

Hinz, M.

M. Adamschik, M. Hinz, C. Maier, P. Schmid, H. Seliger, E. P. Hofer, and E. Kohn, “Diamond micro system for bio-chemistry,” Diamond and Related Mater. 10, 722–730 (2001).
[Crossref]

Hjort, K.

Hofer, E. P.

M. Adamschik, M. Hinz, C. Maier, P. Schmid, H. Seliger, E. P. Hofer, and E. Kohn, “Diamond micro system for bio-chemistry,” Diamond and Related Mater. 10, 722–730 (2001).
[Crossref]

Hunn, J. D.

J. D. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, and C. P. Christensen, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
[Crossref]

Isberg, J.

J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond,” Science 297, 1670–1672 (2002).
[Crossref] [PubMed]

Jackman, R. B.

S. S. M. Chan, F. Raybould, G. Arthur, F. Goodall, and R. B. Jackman, “Laser projection patterning for the formation of thin film diamond microstructures,” Diamond and Related Mater. 5, 317–320 (1996).
[Crossref]

Johansson, E.

J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond,” Science 297, 1670–1672 (2002).
[Crossref] [PubMed]

John, P.

C. E. Troupe, I. C. Drummond, C. Graham, J. Grice, P. John, J. I. B. Wilson, M. G. Jubber, and N. A. Morrison, “Diamond-based glucose sensors [diabetic blood analysis],” Diamond and Related Mater. 7, 575–580 (1998).
[Crossref]

Jubber, M. G.

C. E. Troupe, I. C. Drummond, C. Graham, J. Grice, P. John, J. I. B. Wilson, M. G. Jubber, and N. A. Morrison, “Diamond-based glucose sensors [diabetic blood analysis],” Diamond and Related Mater. 7, 575–580 (1998).
[Crossref]

Kanda, H.

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet Emission from a Diamond pn Junction,” Science 292, 1899–1901 (2001).
[Crossref] [PubMed]

Karlsson, M.

Katz, A.

S. J. Pearton, A. Katz, F. Ren, and J. R. Lothian, “ECR plasma etching of chemically vapour deposited diamond thin films,” Electron. Lett. 28, 822–824 (1992).
[Crossref]

Kennedy, G. R.

C. J. Brierley, C. M. Beck, G. R. Kennedy, J. Metcalfe, and D. Wheatley, “The potential of CVD diamond as a replacement for ZnSe in CO2 laser optics,” Diamond and Related Mater. 8, 1759–1764 (1999).
[Crossref]

Khomich, A. V.

S. Gloor, V. Romano, W. Luthy, H. P. Weber, V. V. Kononenko, S. M. Pimenov, V. I. Konov, and A. V. Khomich, “Antireflection structures written by excimer laser on CVD diamond,” Appl. Phys. A 70, 547–550 (2000).
[Crossref]

V. G. Ralchenko, A. V. Khomich, A. V. Baranov, I.I. Vlasov, and V. I. Konov, “Fabrication of CVD diamond optics with antireflective surface structures,” Phys. Status Solidi A 174, 171–176 (1999).
[Crossref]

Kohn, E.

M. Adamschik, M. Hinz, C. Maier, P. Schmid, H. Seliger, E. P. Hofer, and E. Kohn, “Diamond micro system for bio-chemistry,” Diamond and Related Mater. 10, 722–730 (2001).
[Crossref]

Koizumi, S.

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet Emission from a Diamond pn Junction,” Science 292, 1899–1901 (2001).
[Crossref] [PubMed]

Kononenko, V. V.

S. Gloor, V. Romano, W. Luthy, H. P. Weber, V. V. Kononenko, S. M. Pimenov, V. I. Konov, and A. V. Khomich, “Antireflection structures written by excimer laser on CVD diamond,” Appl. Phys. A 70, 547–550 (2000).
[Crossref]

Konov, V. I.

S. Gloor, V. Romano, W. Luthy, H. P. Weber, V. V. Kononenko, S. M. Pimenov, V. I. Konov, and A. V. Khomich, “Antireflection structures written by excimer laser on CVD diamond,” Appl. Phys. A 70, 547–550 (2000).
[Crossref]

V. G. Ralchenko, A. V. Khomich, A. V. Baranov, I.I. Vlasov, and V. I. Konov, “Fabrication of CVD diamond optics with antireflective surface structures,” Phys. Status Solidi A 174, 171–176 (1999).
[Crossref]

Lothian, J. R.

S. J. Pearton, A. Katz, F. Ren, and J. R. Lothian, “ECR plasma etching of chemically vapour deposited diamond thin films,” Electron. Lett. 28, 822–824 (1992).
[Crossref]

Luthy, W.

S. Gloor, V. Romano, W. Luthy, H. P. Weber, V. V. Kononenko, S. M. Pimenov, V. I. Konov, and A. V. Khomich, “Antireflection structures written by excimer laser on CVD diamond,” Appl. Phys. A 70, 547–550 (2000).
[Crossref]

Maier, C.

M. Adamschik, M. Hinz, C. Maier, P. Schmid, H. Seliger, E. P. Hofer, and E. Kohn, “Diamond micro system for bio-chemistry,” Diamond and Related Mater. 10, 722–730 (2001).
[Crossref]

Metcalfe, J.

C. J. Brierley, C. M. Beck, G. R. Kennedy, J. Metcalfe, and D. Wheatley, “The potential of CVD diamond as a replacement for ZnSe in CO2 laser optics,” Diamond and Related Mater. 8, 1759–1764 (1999).
[Crossref]

Morris, G. Michael

Morrison, N. A.

C. E. Troupe, I. C. Drummond, C. Graham, J. Grice, P. John, J. I. B. Wilson, M. G. Jubber, and N. A. Morrison, “Diamond-based glucose sensors [diabetic blood analysis],” Diamond and Related Mater. 7, 575–580 (1998).
[Crossref]

Nikolajeff, F.

Pearton, S. J.

S. J. Pearton, A. Katz, F. Ren, and J. R. Lothian, “ECR plasma etching of chemically vapour deposited diamond thin films,” Electron. Lett. 28, 822–824 (1992).
[Crossref]

Pimenov, S. M.

S. Gloor, V. Romano, W. Luthy, H. P. Weber, V. V. Kononenko, S. M. Pimenov, V. I. Konov, and A. V. Khomich, “Antireflection structures written by excimer laser on CVD diamond,” Appl. Phys. A 70, 547–550 (2000).
[Crossref]

Popovic, Z. D.

Raguin, D. H.

Ralchenko, V. G.

V. G. Ralchenko, A. V. Khomich, A. V. Baranov, I.I. Vlasov, and V. I. Konov, “Fabrication of CVD diamond optics with antireflective surface structures,” Phys. Status Solidi A 174, 171–176 (1999).
[Crossref]

Raybould, F.

S. S. M. Chan, F. Raybould, G. Arthur, F. Goodall, and R. B. Jackman, “Laser projection patterning for the formation of thin film diamond microstructures,” Diamond and Related Mater. 5, 317–320 (1996).
[Crossref]

Ren, F.

S. J. Pearton, A. Katz, F. Ren, and J. R. Lothian, “ECR plasma etching of chemically vapour deposited diamond thin films,” Electron. Lett. 28, 822–824 (1992).
[Crossref]

Romano, V.

S. Gloor, V. Romano, W. Luthy, H. P. Weber, V. V. Kononenko, S. M. Pimenov, V. I. Konov, and A. V. Khomich, “Antireflection structures written by excimer laser on CVD diamond,” Appl. Phys. A 70, 547–550 (2000).
[Crossref]

Scarsbrook, G. A.

J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond,” Science 297, 1670–1672 (2002).
[Crossref] [PubMed]

Schmid, P.

M. Adamschik, M. Hinz, C. Maier, P. Schmid, H. Seliger, E. P. Hofer, and E. Kohn, “Diamond micro system for bio-chemistry,” Diamond and Related Mater. 10, 722–730 (2001).
[Crossref]

Schmidt, P. H.

E. G. Spencer and P. H. Schmidt, “Ion machining of diamond,” J. Appl. Phys. 43, 2956–2958 (1972).
[Crossref]

Seliger, H.

M. Adamschik, M. Hinz, C. Maier, P. Schmid, H. Seliger, E. P. Hofer, and E. Kohn, “Diamond micro system for bio-chemistry,” Diamond and Related Mater. 10, 722–730 (2001).
[Crossref]

Shimizu, R.

M. Tarutani, Y. Takai, and R. Shimizu, “Application of the focused-ion-beam technique for preparing the cross-sectional sample of chemical vapor deposition diamond thin film for high-resolution transmission electron microscope observation,” Jap. J. Appl. Phys. 31, 1305–1308 (1992).
[Crossref]

Spencer, E. G.

E. G. Spencer and P. H. Schmidt, “Ion machining of diamond,” J. Appl. Phys. 43, 2956–2958 (1972).
[Crossref]

Sprague, R. A.

Takai, Y.

M. Tarutani, Y. Takai, and R. Shimizu, “Application of the focused-ion-beam technique for preparing the cross-sectional sample of chemical vapor deposition diamond thin film for high-resolution transmission electron microscope observation,” Jap. J. Appl. Phys. 31, 1305–1308 (1992).
[Crossref]

Tarutani, M.

M. Tarutani, Y. Takai, and R. Shimizu, “Application of the focused-ion-beam technique for preparing the cross-sectional sample of chemical vapor deposition diamond thin film for high-resolution transmission electron microscope observation,” Jap. J. Appl. Phys. 31, 1305–1308 (1992).
[Crossref]

Troupe, C. E.

C. E. Troupe, I. C. Drummond, C. Graham, J. Grice, P. John, J. I. B. Wilson, M. G. Jubber, and N. A. Morrison, “Diamond-based glucose sensors [diabetic blood analysis],” Diamond and Related Mater. 7, 575–580 (1998).
[Crossref]

Twitchen, D. J.

J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond,” Science 297, 1670–1672 (2002).
[Crossref] [PubMed]

Vlasov, I.I.

V. G. Ralchenko, A. V. Khomich, A. V. Baranov, I.I. Vlasov, and V. I. Konov, “Fabrication of CVD diamond optics with antireflective surface structures,” Phys. Status Solidi A 174, 171–176 (1999).
[Crossref]

Watanabe, K.

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet Emission from a Diamond pn Junction,” Science 292, 1899–1901 (2001).
[Crossref] [PubMed]

Weber, H. P.

S. Gloor, V. Romano, W. Luthy, H. P. Weber, V. V. Kononenko, S. M. Pimenov, V. I. Konov, and A. V. Khomich, “Antireflection structures written by excimer laser on CVD diamond,” Appl. Phys. A 70, 547–550 (2000).
[Crossref]

Wheatley, D.

C. J. Brierley, C. M. Beck, G. R. Kennedy, J. Metcalfe, and D. Wheatley, “The potential of CVD diamond as a replacement for ZnSe in CO2 laser optics,” Diamond and Related Mater. 8, 1759–1764 (1999).
[Crossref]

White, C. W.

J. D. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, and C. P. Christensen, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
[Crossref]

Whitehead, A. J.

J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond,” Science 297, 1670–1672 (2002).
[Crossref] [PubMed]

Wikstrom, T.

J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond,” Science 297, 1670–1672 (2002).
[Crossref] [PubMed]

Wild, C.

B. Dischler and C. Wild, Low-Pressure Synthetic Diamond (Springer, Berlin Heidelberg, 1998).
[Crossref]

Wilson, J. I. B.

C. E. Troupe, I. C. Drummond, C. Graham, J. Grice, P. John, J. I. B. Wilson, M. G. Jubber, and N. A. Morrison, “Diamond-based glucose sensors [diabetic blood analysis],” Diamond and Related Mater. 7, 575–580 (1998).
[Crossref]

Withrow, S. P.

J. D. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, and C. P. Christensen, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
[Crossref]

Appl. Opt. (2)

Appl. Phys. A (1)

S. Gloor, V. Romano, W. Luthy, H. P. Weber, V. V. Kononenko, S. M. Pimenov, V. I. Konov, and A. V. Khomich, “Antireflection structures written by excimer laser on CVD diamond,” Appl. Phys. A 70, 547–550 (2000).
[Crossref]

Appl. Phys. Lett. (1)

J. D. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, and C. P. Christensen, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
[Crossref]

Diamond and Related Mater. (4)

S. S. M. Chan, F. Raybould, G. Arthur, F. Goodall, and R. B. Jackman, “Laser projection patterning for the formation of thin film diamond microstructures,” Diamond and Related Mater. 5, 317–320 (1996).
[Crossref]

C. E. Troupe, I. C. Drummond, C. Graham, J. Grice, P. John, J. I. B. Wilson, M. G. Jubber, and N. A. Morrison, “Diamond-based glucose sensors [diabetic blood analysis],” Diamond and Related Mater. 7, 575–580 (1998).
[Crossref]

M. Adamschik, M. Hinz, C. Maier, P. Schmid, H. Seliger, E. P. Hofer, and E. Kohn, “Diamond micro system for bio-chemistry,” Diamond and Related Mater. 10, 722–730 (2001).
[Crossref]

C. J. Brierley, C. M. Beck, G. R. Kennedy, J. Metcalfe, and D. Wheatley, “The potential of CVD diamond as a replacement for ZnSe in CO2 laser optics,” Diamond and Related Mater. 8, 1759–1764 (1999).
[Crossref]

Electron. Lett. (1)

S. J. Pearton, A. Katz, F. Ren, and J. R. Lothian, “ECR plasma etching of chemically vapour deposited diamond thin films,” Electron. Lett. 28, 822–824 (1992).
[Crossref]

J. Appl. Phys. (1)

E. G. Spencer and P. H. Schmidt, “Ion machining of diamond,” J. Appl. Phys. 43, 2956–2958 (1972).
[Crossref]

Jap. J. Appl. Phys. (1)

M. Tarutani, Y. Takai, and R. Shimizu, “Application of the focused-ion-beam technique for preparing the cross-sectional sample of chemical vapor deposition diamond thin film for high-resolution transmission electron microscope observation,” Jap. J. Appl. Phys. 31, 1305–1308 (1992).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Status Solidi A (1)

V. G. Ralchenko, A. V. Khomich, A. V. Baranov, I.I. Vlasov, and V. I. Konov, “Fabrication of CVD diamond optics with antireflective surface structures,” Phys. Status Solidi A 174, 171–176 (1999).
[Crossref]

Science (2)

J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond,” Science 297, 1670–1672 (2002).
[Crossref] [PubMed]

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet Emission from a Diamond pn Junction,” Science 292, 1899–1901 (2001).
[Crossref] [PubMed]

Other (1)

B. Dischler and C. Wild, Low-Pressure Synthetic Diamond (Springer, Berlin Heidelberg, 1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Calculated transmission through a single interface of air and an AR structured diamond surface as a function of the grating depth. The period is 4 µm and the size of each square is 2.4×2.4 µm2 and the illuminating wavelength is 10.6 µm. The incident light is perpendicular to the grating surface.

Fig. 2.
Fig. 2.

Interferometer picture of a diamond microlens (diameter 90 µm, height 2 µm).

Fig. 3.
Fig. 3.

(left) Scanning electron microscope picture of a diamond subwavelength grating designed for reducing surface reflections at a wavelength of 10.6 µm. The grating period is 4 µm and the grating depth is 1.8 µm. (right) Close-up picture of the subwavelength grating.

Fig. 4.
Fig. 4.

Twyman-Green interferometer picture of the wavefront error from a diamond microlens, λ=633 nm.

Fig. 5.
Fig. 5.

Transmission spectra measured with a spectrophotometer of blank diamond, diamond with subwavelength grating on one side and double-side treated diamond. The transmission has been increased from 71% to 97%. The calculated transmission values are also shown.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ max = λ n

Metrics