Abstract

Fabrication and evaluation of a subwavelength grating in diamond, designed to reduce the Fresnel reflection, is demonstrated. The antireflection (AR) structures are designed to reduce the surface reflection at an illuminating wavelength of 10.6 µm. With this AR-treatment, where no other material is introduced (i.e., no thin film coating), the unique properties of diamond can be fully used. The fabricated AR structures were optically evaluated with a spectrophotometer. The transmission through a diamond substrate with AR structures on both sides was increased from 71% to 97%, with a theoretical value of 99%. Microlenses in diamond are also demonstrated. The lenses are evaluated with interferometers and show good performance. The micro-optical structures were fabricated by electron-beam lithography or photolithographic methods followed by plasma etching.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. S. M. Chan, F. Raybould, G. Arthur, F. Goodall and R. B. Jackman, �??Laser projection patterning for the formation of thin film diamond microstructures,�?? Diamond and Related Mater. 5, 317-320 (1996).
    [CrossRef]
  2. J. D. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly and C. P. Christensen, �??Fabrication of single-crystal diamond microcomponents,�?? Appl. Phys. Lett. 65, 3072-3074 (1994).
    [CrossRef]
  3. S. Gloor, V. Romano, W. Luthy, H. P. Weber, V. V. Kononenko, S. M. Pimenov, V. I. Konov and A. V. Khomich, �??Antireflection structures written by excimer laser on CVD diamond,�?? Appl. Phys. A 70, 547-550 (2000).
    [CrossRef]
  4. M. Tarutani, Y. Takai and R. Shimizu, �??Application of the focused-ion-beam technique for preparing the cross-sectional sample of chemical vapor deposition diamond thin film for high-resolution transmission electron microscope observation,�?? Jap. J. Appl. Phys. 31, 1305-1308 (1992).
    [CrossRef]
  5. E. G. Spencer and P. H. Schmidt, �??Ion machining of diamond,�?? J. Appl. Phys. 43, 2956-2958 (1972).
    [CrossRef]
  6. V. G. Ralchenko, A. V. Khomich, A. V. Baranov, I.I. Vlasov and V. I. Konov, �??Fabrication of CVD diamond optics with antireflective surface structures,�?? Phys. Status Solidi A 174, 171-176 (1999).
    [CrossRef]
  7. S. J. Pearton, A. Katz, F. Ren and J. R. Lothian, �??ECR plasma etching of chemically vapour deposited diamond thin films,�?? Electron. Lett. 28, 822-824 (1992)
    [CrossRef]
  8. M. Karlsson, K. Hjort and F. Nikolajeff, �??Transfer of continuous-relief diffractive structures into diamond by use of inductively coupled plasma dry etching,�?? Opt. Lett. 26, 1752-1754 (2001).
    [CrossRef]
  9. M. Karlsson and F. Nikolajeff, �??Fabrication and evaluation of a diamond diffractive fan-out element for high power lasers,�?? Opt. Express 11, 191-198 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-3-191">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-3-191</a>
    [CrossRef] [PubMed]
  10. B. Dischler and C. Wild, Low-Pressure Synthetic Diamond (Springer, Berlin Heidelberg, 1998).
    [CrossRef]
  11. C. J. Brierley, C. M. Beck, G. R. Kennedy, J. Metcalfe and D. Wheatley, �??The potential of CVD diamond as a replacement for ZnSe in CO2 laser optics,�?? Diamond and Related Mater. 8, 1759-1764 (1999).
    [CrossRef]
  12. Z. D. Popovic, R. A. Sprague and G. A. N. Connell, �??Technique for monolithic fabrication of microlens arrays,�?? Appl. Opt. 27, 1281-1284 (1988).
    [CrossRef] [PubMed]
  13. D. H. Raguin and G. Michael Morris, �??Antireflection structured surfaces for the infrared spectral region,�?? Appl. Opt. 32, 1154-1167 (1993).
    [CrossRef] [PubMed]
  14. J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe and G. A. Scarsbrook, �??High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond,�?? Science 297, 1670-1672 (2002).
    [CrossRef] [PubMed]
  15. S. Koizumi, K. Watanabe, M. Hasegawa and H. Kanda, �??Ultraviolet Emission from a Diamond pn Junction,�?? Science 292, 1899-1901 (2001).
    [CrossRef] [PubMed]
  16. C. E. Troupe, I. C. Drummond, C. Graham, J. Grice, P. John, J. I. B. Wilson, M. G. Jubber and N. A. Morrison, �??Diamond-based glucose sensors [diabetic blood analysis],�?? Diamond and Related Mater. 7, 575-580 (1998).
    [CrossRef]
  17. M. Adamschik, M. Hinz, C. Maier, P. Schmid, H. Seliger, E. P. Hofer and E. Kohn, �??Diamond micro system for bio-chemistry,�?? Diamond and Related Mater. 10, 722-730 (2001).
    [CrossRef]

Appl. Opt.

Appl. Phys. A

S. Gloor, V. Romano, W. Luthy, H. P. Weber, V. V. Kononenko, S. M. Pimenov, V. I. Konov and A. V. Khomich, �??Antireflection structures written by excimer laser on CVD diamond,�?? Appl. Phys. A 70, 547-550 (2000).
[CrossRef]

Appl. Phys. Lett.

J. D. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly and C. P. Christensen, �??Fabrication of single-crystal diamond microcomponents,�?? Appl. Phys. Lett. 65, 3072-3074 (1994).
[CrossRef]

Diamond and Related Mater.

S. S. M. Chan, F. Raybould, G. Arthur, F. Goodall and R. B. Jackman, �??Laser projection patterning for the formation of thin film diamond microstructures,�?? Diamond and Related Mater. 5, 317-320 (1996).
[CrossRef]

C. E. Troupe, I. C. Drummond, C. Graham, J. Grice, P. John, J. I. B. Wilson, M. G. Jubber and N. A. Morrison, �??Diamond-based glucose sensors [diabetic blood analysis],�?? Diamond and Related Mater. 7, 575-580 (1998).
[CrossRef]

M. Adamschik, M. Hinz, C. Maier, P. Schmid, H. Seliger, E. P. Hofer and E. Kohn, �??Diamond micro system for bio-chemistry,�?? Diamond and Related Mater. 10, 722-730 (2001).
[CrossRef]

C. J. Brierley, C. M. Beck, G. R. Kennedy, J. Metcalfe and D. Wheatley, �??The potential of CVD diamond as a replacement for ZnSe in CO2 laser optics,�?? Diamond and Related Mater. 8, 1759-1764 (1999).
[CrossRef]

Electron. Lett.

S. J. Pearton, A. Katz, F. Ren and J. R. Lothian, �??ECR plasma etching of chemically vapour deposited diamond thin films,�?? Electron. Lett. 28, 822-824 (1992)
[CrossRef]

J. Appl. Phys.

E. G. Spencer and P. H. Schmidt, �??Ion machining of diamond,�?? J. Appl. Phys. 43, 2956-2958 (1972).
[CrossRef]

Jap. J. Appl. Phys.

M. Tarutani, Y. Takai and R. Shimizu, �??Application of the focused-ion-beam technique for preparing the cross-sectional sample of chemical vapor deposition diamond thin film for high-resolution transmission electron microscope observation,�?? Jap. J. Appl. Phys. 31, 1305-1308 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Status Solidi A

V. G. Ralchenko, A. V. Khomich, A. V. Baranov, I.I. Vlasov and V. I. Konov, �??Fabrication of CVD diamond optics with antireflective surface structures,�?? Phys. Status Solidi A 174, 171-176 (1999).
[CrossRef]

Science

J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe and G. A. Scarsbrook, �??High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond,�?? Science 297, 1670-1672 (2002).
[CrossRef] [PubMed]

S. Koizumi, K. Watanabe, M. Hasegawa and H. Kanda, �??Ultraviolet Emission from a Diamond pn Junction,�?? Science 292, 1899-1901 (2001).
[CrossRef] [PubMed]

Other

B. Dischler and C. Wild, Low-Pressure Synthetic Diamond (Springer, Berlin Heidelberg, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Calculated transmission through a single interface of air and an AR structured diamond surface as a function of the grating depth. The period is 4 µm and the size of each square is 2.4×2.4 µm2 and the illuminating wavelength is 10.6 µm. The incident light is perpendicular to the grating surface.

Fig. 2.
Fig. 2.

Interferometer picture of a diamond microlens (diameter 90 µm, height 2 µm).

Fig. 3.
Fig. 3.

(left) Scanning electron microscope picture of a diamond subwavelength grating designed for reducing surface reflections at a wavelength of 10.6 µm. The grating period is 4 µm and the grating depth is 1.8 µm. (right) Close-up picture of the subwavelength grating.

Fig. 4.
Fig. 4.

Twyman-Green interferometer picture of the wavefront error from a diamond microlens, λ=633 nm.

Fig. 5.
Fig. 5.

Transmission spectra measured with a spectrophotometer of blank diamond, diamond with subwavelength grating on one side and double-side treated diamond. The transmission has been increased from 71% to 97%. The calculated transmission values are also shown.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ max = λ n

Metrics