Abstract

Using a rigorous electromagnetic analysis of two-dimensional (or crossed) gratings, we account, in a first step, for the enhanced transmission of a sub-wavelength hole array pierced inside a metallic film, when plasmons are simultaneously excited at both interfaces of the film. Replacing the hole array by a continuous metallic film, we then show that resonant extraordinary transmission can still occur, provided the film is modulated. The modulation may be produced in both a one-dimensional and a two dimensional geometry either by periodic surface deformation or by adding an array of high index pillars. Transmittivity higher than 80% is found when surface plasmons are excited at both interfaces, in a symmetric configuration.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature, 391, 667–669 (1998)
    [Crossref]
  2. U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998)
    [Crossref]
  3. M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608, 1999
    [Crossref]
  4. J. A. Porto, F. T. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999)
    [Crossref]
  5. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782 (1998)
    [Crossref]
  6. T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998)
    [Crossref]
  7. Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000)
    [Crossref]
  8. M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105-1 – 195105-10 (2002)
    [Crossref]
  9. Q. Cao and Ph. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403-1 – 057403-4 (2002)
    [Crossref] [PubMed]
  10. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000)
    [Crossref]
  11. S. Enoch, E. Popov, M. Nevière, and R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A: Pure and Applied Optics 4, S83–S87 (2002)
    [Crossref]
  12. L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001)
    [Crossref] [PubMed]
  13. L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001)
    [Crossref] [PubMed]
  14. A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001)
    [Crossref]
  15. M. Nevière, E. Popov, R. Reinisch, and G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon and Breach Sci. Publ., Amsterdam, 2000) and the references cited therein
  16. M. Nevière and R. reinisch, “Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman scattering,” Phys. Rev. B 26, 5043–5048 (1982)
    [Crossref]
  17. R. Reinisch and M. Nevière, “Electromagnetic theory of diffraction in nonlinear optics and surfaceenhanced nonlinear optical effects,” Phys. Rev. B 28, 1870–1885 (1983)
    [Crossref]
  18. I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25, 595–597 (2000)
    [Crossref]
  19. American Institute of Physics Handbook, 2nd edition (Mc Graw-Hill, New-York, 1963)
  20. L. Li, “New formulation of the Fourier-modal method for crossed surface-relief gratings”, J. Opt. Soc. Am. A 14, 2758–2769 (1997)
    [Crossref]
  21. L. Li, “Formulation and comparison of two recursive matrix algorithm for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996)
    [Crossref]
  22. M. Nevière and E. Popov, Light propagation in periodic media; differential theory and design (Marcel Dekker, New York, 2003)
  23. R. Gruhlke, W. Hod, and D. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin film,” Phys. Rev. Lett. 56, 2838–2841 (1986)
    [Crossref] [PubMed]
  24. U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999)
    [Crossref]
  25. Z. Zhu and T. Brown, “Nonperturbative analysis of cross coupling in corrugated metal films,” J. Opt. Soc. Am. A 17, 1798–1806 (2000)
    [Crossref]
  26. R.C. McPhedran, G. H. Derrick, and L. C. Botten, “Theory of Crossed Gratings,” in Electromagnetic Theory of Gratings, R. Petit ed. (Springer-Verlag, Berlin, 1980), pp. 227–276

2002 (3)

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105-1 – 195105-10 (2002)
[Crossref]

Q. Cao and Ph. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403-1 – 057403-4 (2002)
[Crossref] [PubMed]

S. Enoch, E. Popov, M. Nevière, and R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A: Pure and Applied Optics 4, S83–S87 (2002)
[Crossref]

2001 (3)

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001)
[Crossref] [PubMed]

L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001)
[Crossref] [PubMed]

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001)
[Crossref]

2000 (4)

I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25, 595–597 (2000)
[Crossref]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000)
[Crossref]

Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000)
[Crossref]

Z. Zhu and T. Brown, “Nonperturbative analysis of cross coupling in corrugated metal films,” J. Opt. Soc. Am. A 17, 1798–1806 (2000)
[Crossref]

1999 (3)

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999)
[Crossref]

M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608, 1999
[Crossref]

J. A. Porto, F. T. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999)
[Crossref]

1998 (4)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782 (1998)
[Crossref]

T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998)
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature, 391, 667–669 (1998)
[Crossref]

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998)
[Crossref]

1997 (1)

1996 (1)

1986 (1)

R. Gruhlke, W. Hod, and D. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin film,” Phys. Rev. Lett. 56, 2838–2841 (1986)
[Crossref] [PubMed]

1983 (1)

R. Reinisch and M. Nevière, “Electromagnetic theory of diffraction in nonlinear optics and surfaceenhanced nonlinear optical effects,” Phys. Rev. B 28, 1870–1885 (1983)
[Crossref]

1982 (1)

M. Nevière and R. reinisch, “Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman scattering,” Phys. Rev. B 26, 5043–5048 (1982)
[Crossref]

Astilean, S.

Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000)
[Crossref]

Avrutsky, I.

Botten, L. C.

R.C. McPhedran, G. H. Derrick, and L. C. Botten, “Theory of Crossed Gratings,” in Electromagnetic Theory of Gratings, R. Petit ed. (Springer-Verlag, Berlin, 1980), pp. 227–276

Brown, T.

Cao, Q.

Q. Cao and Ph. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403-1 – 057403-4 (2002)
[Crossref] [PubMed]

de Fornel, F.

L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001)
[Crossref] [PubMed]

Derrick, G. H.

R.C. McPhedran, G. H. Derrick, and L. C. Botten, “Theory of Crossed Gratings,” in Electromagnetic Theory of Gratings, R. Petit ed. (Springer-Verlag, Berlin, 1980), pp. 227–276

Ebbesen, T. W.

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001)
[Crossref] [PubMed]

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001)
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature, 391, 667–669 (1998)
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782 (1998)
[Crossref]

Enoch, S.

S. Enoch, E. Popov, M. Nevière, and R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A: Pure and Applied Optics 4, S83–S87 (2002)
[Crossref]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000)
[Crossref]

Garcia-Vidal, F. T.

J. A. Porto, F. T. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999)
[Crossref]

Garcia-Vidal, J. J.

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001)
[Crossref]

T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998)
[Crossref]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782 (1998)
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature, 391, 667–669 (1998)
[Crossref]

Grillot, F.

L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001)
[Crossref] [PubMed]

Gruhlke, R.

R. Gruhlke, W. Hod, and D. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin film,” Phys. Rev. Lett. 56, 2838–2841 (1986)
[Crossref] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782 (1998)
[Crossref]

Hall, D.

R. Gruhlke, W. Hod, and D. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin film,” Phys. Rev. Lett. 56, 2838–2841 (1986)
[Crossref] [PubMed]

Heitmann, D.

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999)
[Crossref]

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998)
[Crossref]

Hod, W.

R. Gruhlke, W. Hod, and D. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin film,” Phys. Rev. Lett. 56, 2838–2841 (1986)
[Crossref] [PubMed]

Hugonin, J. P.

Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000)
[Crossref]

Kim, T. J.

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001)
[Crossref]

Kochergin, V.

Krishman, A.

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001)
[Crossref]

Lalanne, Ph.

Q. Cao and Ph. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403-1 – 057403-4 (2002)
[Crossref] [PubMed]

Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000)
[Crossref]

Lezec, H. J.

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001)
[Crossref]

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001)
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature, 391, 667–669 (1998)
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782 (1998)
[Crossref]

Li, L.

Lopez-Rios, T.

T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998)
[Crossref]

Martin-Moreno, L.

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001)
[Crossref]

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001)
[Crossref] [PubMed]

McPhedran, R.C.

R.C. McPhedran, G. H. Derrick, and L. C. Botten, “Theory of Crossed Gratings,” in Electromagnetic Theory of Gratings, R. Petit ed. (Springer-Verlag, Berlin, 1980), pp. 227–276

Mendoza, D.

T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998)
[Crossref]

Möller, K. D.

Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000)
[Crossref]

Nevière, M.

S. Enoch, E. Popov, M. Nevière, and R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A: Pure and Applied Optics 4, S83–S87 (2002)
[Crossref]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000)
[Crossref]

R. Reinisch and M. Nevière, “Electromagnetic theory of diffraction in nonlinear optics and surfaceenhanced nonlinear optical effects,” Phys. Rev. B 28, 1870–1885 (1983)
[Crossref]

M. Nevière and R. reinisch, “Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman scattering,” Phys. Rev. B 26, 5043–5048 (1982)
[Crossref]

M. Nevière and E. Popov, Light propagation in periodic media; differential theory and design (Marcel Dekker, New York, 2003)

M. Nevière, E. Popov, R. Reinisch, and G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon and Breach Sci. Publ., Amsterdam, 2000) and the references cited therein

Palamaru, M.

Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000)
[Crossref]

Pannetier, B.

T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998)
[Crossref]

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001)
[Crossref] [PubMed]

Pendry, J.

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001)
[Crossref]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001)
[Crossref] [PubMed]

J. A. Porto, F. T. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999)
[Crossref]

Popov, E.

S. Enoch, E. Popov, M. Nevière, and R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A: Pure and Applied Optics 4, S83–S87 (2002)
[Crossref]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000)
[Crossref]

M. Nevière, E. Popov, R. Reinisch, and G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon and Breach Sci. Publ., Amsterdam, 2000) and the references cited therein

M. Nevière and E. Popov, Light propagation in periodic media; differential theory and design (Marcel Dekker, New York, 2003)

Porto, J. A.

J. A. Porto, F. T. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999)
[Crossref]

Reinisch, R.

S. Enoch, E. Popov, M. Nevière, and R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A: Pure and Applied Optics 4, S83–S87 (2002)
[Crossref]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000)
[Crossref]

R. Reinisch and M. Nevière, “Electromagnetic theory of diffraction in nonlinear optics and surfaceenhanced nonlinear optical effects,” Phys. Rev. B 28, 1870–1885 (1983)
[Crossref]

M. Nevière and R. reinisch, “Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman scattering,” Phys. Rev. B 26, 5043–5048 (1982)
[Crossref]

M. Nevière, E. Popov, R. Reinisch, and G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon and Breach Sci. Publ., Amsterdam, 2000) and the references cited therein

Salomon, L.

L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001)
[Crossref] [PubMed]

Sanchez-Dehesa, J.

T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998)
[Crossref]

Schröter, U.

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999)
[Crossref]

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998)
[Crossref]

Thio, T.

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001)
[Crossref]

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001)
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature, 391, 667–669 (1998)
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782 (1998)
[Crossref]

Treacy, M. M. J.

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105-1 – 195105-10 (2002)
[Crossref]

M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608, 1999
[Crossref]

Vidal, F. J. Garcia

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001)
[Crossref] [PubMed]

Vitrant, G.

M. Nevière, E. Popov, R. Reinisch, and G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon and Breach Sci. Publ., Amsterdam, 2000) and the references cited therein

Wolf, P. A.

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001)
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature, 391, 667–669 (1998)
[Crossref]

Zayats, A.

L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001)
[Crossref] [PubMed]

Zhao, Y.

Zhu, Z.

Appl. Phys. Lett. (1)

M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608, 1999
[Crossref]

J. Opt. A: Pure and Applied Optics (1)

S. Enoch, E. Popov, M. Nevière, and R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A: Pure and Applied Optics 4, S83–S87 (2002)
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000)
[Crossref]

J. Opt. Soc. Am. A (3)

Nature, (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature, 391, 667–669 (1998)
[Crossref]

Opt. Commun. (1)

A. Krishman, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and J. J. Garcia-Vidal, “Evanescently-coupled surface resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001)
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (7)

M. Nevière and R. reinisch, “Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman scattering,” Phys. Rev. B 26, 5043–5048 (1982)
[Crossref]

R. Reinisch and M. Nevière, “Electromagnetic theory of diffraction in nonlinear optics and surfaceenhanced nonlinear optical effects,” Phys. Rev. B 28, 1870–1885 (1983)
[Crossref]

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998)
[Crossref]

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105-1 – 195105-10 (2002)
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782 (1998)
[Crossref]

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999)
[Crossref]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000)
[Crossref]

Phys. Rev. Lett. (6)

R. Gruhlke, W. Hod, and D. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin film,” Phys. Rev. Lett. 56, 2838–2841 (1986)
[Crossref] [PubMed]

T. Lopez-Rios, D. Mendoza, J. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998)
[Crossref]

Q. Cao and Ph. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403-1 – 057403-4 (2002)
[Crossref] [PubMed]

J. A. Porto, F. T. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999)
[Crossref]

L. Martin-Moreno, F. J. Garcia Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001)
[Crossref] [PubMed]

L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001)
[Crossref] [PubMed]

Other (4)

M. Nevière, E. Popov, R. Reinisch, and G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon and Breach Sci. Publ., Amsterdam, 2000) and the references cited therein

American Institute of Physics Handbook, 2nd edition (Mc Graw-Hill, New-York, 1963)

M. Nevière and E. Popov, Light propagation in periodic media; differential theory and design (Marcel Dekker, New York, 2003)

R.C. McPhedran, G. H. Derrick, and L. C. Botten, “Theory of Crossed Gratings,” in Electromagnetic Theory of Gratings, R. Petit ed. (Springer-Verlag, Berlin, 1980), pp. 227–276

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Transmittance as a function of wavelength in micrometers

Fig. 2.
Fig. 2.

Transmittivity as a function of wavelength for a continuous modulated silver film

Fig. 3.
Fig. 3.

Same as Fig. 2, but with 0.07 µm thickness. The red curve represents the sum of reflected and transmitted efficiency

Fig. 4.
Fig. 4.

Maximum of transmission for a silver layer as a function of the layer thickness for four different structures: plane layer (green curve), sinusoidal grating (groove depth h=18 nm is constant for thicknesses greater than 150 nm) with an identical substrate and superstrate material (black curve), grating hole array (violet curve),11 and a symmetrical prism coupler with 2 µm air gap (blue curve)

Fig. 5.
Fig. 5.

Light transmission of a two-dimensionally corrugated sinusoidal film as a function of the wavelength and the modulation depth.

Fig. 6.
Fig. 6.

Schematical representation of a plane metallic layer with a periodical array of dielectric pillars

Fig.7.
Fig.7.

Light transmission of a two-dimensional dielectric pillar grating on a plane silver film as a function of the wavelength and the pillar height.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

y = h 4 [ sin ( Kx ) + sin ( Kz ) ]

Metrics