Abstract

Unambiguous simultaneous measurement of strain and temperature based on dual long-period fiber gratings by controlling their thermal and strain sensitivities is proposed and experimentally demonstrated. The difference in the wavelength peak shift and the separation with the variation of strain and temperature allows discrimination between the strain and temperature effects, respectively.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan and J. E. Sipe, �??Long-period fiber gratings as band-rejection filters,�?? J. Lightwave Technol. 14, 58-64 (1996).
    [CrossRef]
  2. V. Bhatia, K. A. Murphy, and R. O. Claus, �??Simultaneous Measurement Systems Employing Long-Period Grating Sensors,�?? in Proc. Optical Fiber Sensors 11, 702-705 (1996).
  3. Y. G. Han, C. S. Kim, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, �??Performance enhancement of strain and temperature sensors using long period fiber grating,�?? Fiber and Int. Opt. 20, 591-600 (2001).
  4. S. Khaliq, S. W. James, R. P. Tatam, �??Fiber-optic liquid-level sensor using a long-period grating,�?? Opt. Lett. 26, 1224-1226 (2001).
    [CrossRef]
  5. Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, �??Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,�?? IEEE Photon. Technol. Lett. 12, 531-533 (2000).
    [CrossRef]
  6. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani and A. M. Vengsarkar, �??Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Temperature Discrimination,�?? IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
    [CrossRef]
  7. B. A. L. Gwandu, X. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, �??Simultaneous and independent sensing of arbitrary temperature and bending using sampled fiber Bragg grating,�?? Electron. Lett. 37, 946-948 (2001).
    [CrossRef]
  8. G. Humbert, A. Malki, �??Characterizations at very high temperature of electric arc-induced long-period fiber,�?? Opt. Commun. 208, 329-335 (2002).
    [CrossRef]
  9. M. N. Ng, K. S. Chiang, �??Thermal effects on the transmission spectra of long-period fiber gratings,�?? Opt. Commun. 208, 321-327 (2002).
    [CrossRef]
  10. M. G. Xu, J.-L. Archambault, L. Reekie and J. P. Dakin, �??Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,�?? Electron. Lett. 30, 1085-1087 (1994).
    [CrossRef]
  11. B. O Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, �??Simultaneous strain and temperature measurement using a single fiber Bragg grating,�?? Electron. Lett. 38, 1018-1019 (2000).
    [CrossRef]

Electron. Lett. (3)

B. A. L. Gwandu, X. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, �??Simultaneous and independent sensing of arbitrary temperature and bending using sampled fiber Bragg grating,�?? Electron. Lett. 37, 946-948 (2001).
[CrossRef]

M. G. Xu, J.-L. Archambault, L. Reekie and J. P. Dakin, �??Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,�?? Electron. Lett. 30, 1085-1087 (1994).
[CrossRef]

B. O Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, �??Simultaneous strain and temperature measurement using a single fiber Bragg grating,�?? Electron. Lett. 38, 1018-1019 (2000).
[CrossRef]

Fiber and Int. Opt. (1)

Y. G. Han, C. S. Kim, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, �??Performance enhancement of strain and temperature sensors using long period fiber grating,�?? Fiber and Int. Opt. 20, 591-600 (2001).

IEEE Photon. Technol. Lett. (2)

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, �??Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,�?? IEEE Photon. Technol. Lett. 12, 531-533 (2000).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani and A. M. Vengsarkar, �??Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Temperature Discrimination,�?? IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
[CrossRef]

J. Lightwave Technol. (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan and J. E. Sipe, �??Long-period fiber gratings as band-rejection filters,�?? J. Lightwave Technol. 14, 58-64 (1996).
[CrossRef]

Opt. Commun. (2)

G. Humbert, A. Malki, �??Characterizations at very high temperature of electric arc-induced long-period fiber,�?? Opt. Commun. 208, 329-335 (2002).
[CrossRef]

M. N. Ng, K. S. Chiang, �??Thermal effects on the transmission spectra of long-period fiber gratings,�?? Opt. Commun. 208, 321-327 (2002).
[CrossRef]

Opt. Lett. (1)

Proc. Optical Fiber Sensors (1)

V. Bhatia, K. A. Murphy, and R. O. Claus, �??Simultaneous Measurement Systems Employing Long-Period Grating Sensors,�?? in Proc. Optical Fiber Sensors 11, 702-705 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the simultaneous measurement of strain and temperature based on two LPFGs with similar strain sensitivities.

Fig. 2.
Fig. 2.

Evolution of the transmission characteristics of two LPFGs during the grating formation. The dashed and gray lines show the final transmission characteristics of LPFG1 alone and overlapped gratings, respectively. Circles show the transmission characteristics of LPFG2 with UV exposure during the grating formation.

Fig. 3.
Fig. 3.

Measurement results of the peak separation of LPFGs with the temperature change. The sensitivity estimated from the linear fit of the peak separation was 0.69 nm/°C. The transmission characteristics of LPFGs with the temperature change were shown in the inset

Fig. 4.
Fig. 4.

Measurement results of the peak shift of LPFGs with the strain change. The sensitivity estimated from the linear fit of the peak shift was 0.46 nm/µstrain. The transmission characteristics of LPFGs with the strain change were shown in the inset.

Fig. 5.
Fig. 5.

Results of simultaneous measurement of strain and temperature. The rms error of the measured strain and temperature were 8.3 µstrain and 0.7°C, respectively.

Tables (1)

Tables Icon

Table 1. Measurement results of the temperature and strain sensitivities of LPFG1 and LPFG2 with the cladding mode order m.

Metrics